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https://www.theguardian.com/business/2015/may/01/us-aviation-authority-boeing-787-dreamliner-bug-could-cause-loss-of-control

https://www.theguardian.com/business/2015/may/01/us-aviation-authority-boeing-787-dreamliner-bug-could-cause-loss-of-control
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Buffer over-read vulnerabilities

Logic error vulnerabilities

Buffer over-read vulnerabilitiesNull pointer dereference

Use after free

Buffer overflow vulnerabilities
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Formal verification

Of libraries and apps Of compilers Of operating systems
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Formally 
Verified 

Software

Fonseca et al., An Empirical Study on the Correctness of Formally Verified Distributed Systems, Eurosys ‘17
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Fonseca et al., An Empirical Study on the Correctness of Formally Verified Distributed Systems, Eurosys ‘17
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Takeaway #1: 3 key questions to ask

1. What specifications does your proof rely on?
2. Why do you trust those specifications?
3. Does anybody else use these specifications?
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Takeaway #2: Specifications must have multiple uses
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Takeaway #2: Specifications must have multiple uses
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How can you trust formally verified software?

How can you trust formally verified software?
Specifications are part of the TCB
3 key questions
Specifications must have multiple users

How can you trust formal specifications?
Testing specifications
Verifying processors
Verifying specifications

How can you trust formally verified software?
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Creating trustworthy 
specifications

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016
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The state of most processor specifications

Large (1000s of pages)
Broad (10+ years of implementations, multiple manufacturers)
Complex (exceptions, weak memory, …)
Informal (mostly English prose)

We are all just learning how to (retrospectively) formalize 
specifications
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Arm Processor Specifications
A-class (phones, tablets, servers, …) M-class (microcontrollers, IoT)

6,000 pages
40,000 line formal specification 

Instructions (32/64-bit)
Exceptions / Interrupts
Memory protection
Page tables
Multiple privilege levels
System control registers
Debug / trace

1,200 pages
15,000 line formal specification 

Instructions (32-bit)
Exceptions / Interrupts
Memory protection
Page tables
Multiple privilege levels
System control registers
Debug / trace
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English prose
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Pseudocode
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Arm Architecture Specification Language (ASL)

Indentation-based syntax
Imperative
First-order
Strongly typed (type inference, polymorphism, dependent types)

Bit-vectors
Unbounded integers
Infinite precision reals
Arrays, Records, Enumerations

Exceptions
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Interpreter

C
Backend

ASL Spec
Lexer
Parser

Typecheck
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Architectural Conformance Suite

Processor architectural compliance sign-off

Large
• v8-A 11,000 test programs, > 2 billion instructions
• v8-M 3,500 test programs, > 250 million instructions

Thorough
• Tests dark corners of specification
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Testing Pass Rate
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Measuring architecture coverage of tests
Untested: op1*op2 == -3.0, FPCR.RND=-Inf 
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Formal verification
of processors

“End to End Verification of ARM processors with ISA Formal,” CAV 2016
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Combinational
Verilog

ASL to 
Verilog

Architecture
Specification

Specialize
Monomorphize

Constant Propagation
Width Analysis

Exception Handling
…
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Arm CPUs verified with ISA-Formal

A-class
Cortex-A53
Cortex-A32
Cortex-A35
Cortex-A55
Next generation

R-class
Cortex-R52
Next generation

M-class
Cortex-M4
Cortex-M7
Cortex-M33
Next generation

Cambridge Projects

Rolling out globally to other design centres
Sophia, France - Cortex-A75 (partial)
Austin, USA - TBA
Chandler, USA - TBA
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Formal validation
of specifications

“Who guards the guards?  Formal Validation of ARM v8-M Specifications” OOPSLA 2017
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Suppose…

Last year: audited all accesses to privileged registers
• Specification: Added missing privilege checks
• Testsuite: Added new tests to test every privilege check
• Formal testbench: Verify every check

This year: add new instruction but accidentally omit privilege check

How many tests in the test suite will fail on new specification?
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Executable Specification

Defines what is allowed
Animation   →  Check spec matches expectation
Testable      →  Compare spec against implementation
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Executable Specification

Defines what is allowed
Animation   →  Check spec matches expectation
Testable      →  Compare spec against implementation

Does not define what is not allowed
e.g., Impossible states, impossible actions/transitions,  security properties
No redundancy
Problem when extending specification
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Creating a specification of disallowed behaviour

Where to get a list of disallowed behaviour?
How to formalise this list?
How to formally validate specification against spec of disallowed behaviour?
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Rule JRJC 
Exit from lockup is by any of the following: 
• A Cold reset. 
• A Warm reset. 
• Entry to Debug state. 
• Preemption by a higher priority processor exception.
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Rule JRJC 
Exit from lockup is by any of the following: 
• A Cold reset. 
• A Warm reset. 
• Entry to Debug state. 
• Preemption by a higher priority processor exception.

State Change X    
Event A             
Event B               
State Change C                
Event D                                                                                            

R         

Rule R:    X → A ∨ B ∨ C ∨ D

And cannot happen any other way
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State Change X Exit from lockup Fell(LockedUp)

Event A A Cold reset Called(TakeColdReset)

Event B A Warm reset Called(TakeReset)

State Change C Entry to Debug state Rose(Halted)

Event D Preemption by a higher 
priority processor 
exception

Called(ExceptionEntry)
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Rule JRJC 
Exit from lockup is by any of the following: 

• A Cold reset. 
• A Warm reset. 
• Entry to Debug state. 
• Preemption by a higher priority processor exception.

Fell(LockedUp) → Called(TakeColdReset)
                            ∨ Called(TakeReset)
                            ∨ Rose(Halted)
                            ∨ Called(ExceptionEntry)

__Called_TakeColdReset      = FALSE; 
__Called_TakeReset          = FALSE; 
__Called_TakeExceptionEntry = FALSE; 
__Past_LockedUp = LockedUp; 
__Past_Halted   = Halted; 

assert((__Past_LockedUp > LockedUp) 
       ==> 
       (  __Called_TakeColdReset 
       || __Called_TakeReset 
       || __Past_Halted < Halted 
       || __Called_ExceptionEntry));
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Rule VGNW 
Entry to lockup from an exception causes 
• Any Fault Status Registers associated with the exception 

to be updated. 
• No update to the exception state, pending or active. 
• The PC to be set to 0xEFFFFFFE. 
• EPSR.IT to become UNKNOWN. 

In addition, HFSR.FORCED is not set to 1.
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Rule VGNW 
Entry to lockup from an exception causes 
• Any Fault Status Registers associated with the exception 

to be updated. 
• No update to the exception state, pending or active. 
• The PC to be set to 0xEFFFFFFE. 
• EPSR.IT to become UNKNOWN. 

In addition, HFSR.FORCED is not set to 1.

Out of date
Misleading

Ambiguous
Untestable
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Arithmetic operations
Boolean operations
Bit Vectors
Arrays 
Functions
Local Variables
Statements

Assignments
If-statements
Loops
Exceptions

Arm Specification 
Language SMT

Arithmetic operations
Boolean operations
Bit Vectors
Arrays 
Functions
Local Variables
Statements

Assignments
If-statements
Loops
Exceptions
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Bug in Spec

12 Bugs 
Found
so far
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Lexer
Parser

Typechecker

Interpreter

Verilog
Backend

C
Backend
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Coverage

Simulation
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ASL Spec

SMT
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ARM
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Processor
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Public release of machine readable Arm specification

Enable formal verification of software and tools
Releases

April 2017: v8.2
July 2017: v8.3

Working with Cambridge University REMS group to convert to SAIL
Backends for HOL, OCaml, Memory model, (hopefully Coq too)

Tools: https://github.com/alastairreid/mra_tools

Talk to me about how I can help you use it

https://github.com/alastairreid/mra_tools
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Potential uses of processor specifications

Verifying compilers
Verifying OS page table / interrupt / boot code
Verifying processor pipelines
Verification and discovery of peephole optimizations
Automatic generation of binary translators
Automatic generation of test cases
Decompilation of binaries
Abstract interpretation of binaries
etc.
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How can you trust formally 
verified software?
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How can you trust formal specifications?

Test the specifications you depend on
Ensure specifications have multiple uses
Create meta-specifications

https://xkcd.com/1416/

Hiring in Security and Correctness group — contact me



Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
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@alastair_d_reid

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016

“Who guards the guards?  Formal Validation of ARM v8-M Specifications,” OOPSLA 2017
“End to End Verification of ARM processors with ISA Formal,” CAV 2016


