
© 2017 Arm Limited

How Can You Trust
Formally Verified

Software?
Alastair Reid

Arm Research
@alastair_d_reid

© 2017 Arm Limited 2
https://www.theguardian.com/business/2015/may/01/us-aviation-authority-boeing-787-dreamliner-bug-could-cause-loss-of-control

https://www.theguardian.com/business/2015/may/01/us-aviation-authority-boeing-787-dreamliner-bug-could-cause-loss-of-control

© 2017 Arm Limited 3

Buffer over-read vulnerabilities

© 2017 Arm Limited 3

Buffer over-read vulnerabilities

Logic error vulnerabilities

© 2017 Arm Limited 3

Buffer over-read vulnerabilities

Logic error vulnerabilities

Buffer over-read vulnerabilitiesNull pointer dereference

© 2017 Arm Limited 3

Buffer over-read vulnerabilities

Logic error vulnerabilities

Buffer over-read vulnerabilitiesNull pointer dereference

Use after free

© 2017 Arm Limited 3

Buffer over-read vulnerabilities

Logic error vulnerabilities

Buffer over-read vulnerabilitiesNull pointer dereference

Use after free

Buffer overflow vulnerabilities

© 2017 Arm Limited 4

Formal verification

Of libraries and apps Of compilers Of operating systems

© 2017 Arm Limited 5

Formally
Verified

Software

Fonseca et al., An Empirical Study on the Correctness of Formally Verified Distributed Systems, Eurosys ‘17

© 2017 Arm Limited 5

Formally
Verified

Software

Verification
Tool

Formal
Specifications

Shim
Code

Fonseca et al., An Empirical Study on the Correctness of Formally Verified Distributed Systems, Eurosys ‘17

© 2017 Arm Limited 6

Takeaway #1: 3 key questions to ask

1. What specifications does your proof rely on?
2. Why do you trust those specifications?
3. Does anybody else use these specifications?

© 2017 Arm Limited 7

Takeaway #2: Specifications must have multiple uses

© 2017 Arm Limited 8

Takeaway #2: Specifications must have multiple uses

© 2017 Arm Limited 9

How can you trust formally verified software?

How can you trust formally verified software?
Specifications are part of the TCB
3 key questions
Specifications must have multiple users

How can you trust formal specifications?
Testing specifications
Verifying processors
Verifying specifications

How can you trust formally verified software?

© 2017 Arm Limited

Creating trustworthy
specifications

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016

© 2017 Arm Limited 11

The state of most processor specifications

Large (1000s of pages)
Broad (10+ years of implementations, multiple manufacturers)
Complex (exceptions, weak memory, …)
Informal (mostly English prose)

We are all just learning how to (retrospectively) formalize
specifications

© 2017 Arm Limited 12

Arm Processor Specifications
A-class (phones, tablets, servers, …) M-class (microcontrollers, IoT)

6,000 pages
40,000 line formal specification

Instructions (32/64-bit)
Exceptions / Interrupts
Memory protection
Page tables
Multiple privilege levels
System control registers
Debug / trace

1,200 pages
15,000 line formal specification

Instructions (32-bit)
Exceptions / Interrupts
Memory protection
Page tables
Multiple privilege levels
System control registers
Debug / trace

© 2017 Arm Limited 13

English prose

© 2017 Arm Limited 14

Pseudocode

© 2017 Arm Limited 15

Arm Architecture Specification Language (ASL)

Indentation-based syntax
Imperative
First-order
Strongly typed (type inference, polymorphism, dependent types)

Bit-vectors
Unbounded integers
Infinite precision reals
Arrays, Records, Enumerations

Exceptions

© 2017 Arm Limited 16

Interpreter

C
Backend

ASL Spec
Lexer
Parser

Typecheck

© 2017 Arm Limited 17

Architectural Conformance Suite

Processor architectural compliance sign-off

Large
• v8-A 11,000 test programs, > 2 billion instructions
• v8-M 3,500 test programs, > 250 million instructions

Thorough
• Tests dark corners of specification

© 2017 Arm Limited 18

Testing Pass Rate

0

25

50

75

100

ISA Supervisor Hypervisor/Security

(Artists Impression)

Time

18

© 2017 Arm Limited 19

0%

25%

50%

75%

100%

v8-M

19

© 2017 Arm Limited 20

Measuring architecture coverage of tests
Untested: op1*op2 == -3.0, FPCR.RND=-Inf

© 2017 Arm Limited 21

© 2017 Arm Limited

Formal verification
of processors

“End to End Verification of ARM processors with ISA Formal,” CAV 2016

ARMResearch

Checking an instruction

23

ADD

ARMResearch

Checking an instruction

23

ADDCMP LDR STR BNE

Context

© 2017 Arm Limited 24

Memory

R0

-

R15
DecodeFetch

EX MEM WBIF ID

R0

-

R15

© 2017 Arm Limited 24

Memory

R0

-

R15
DecodeFetch

EX MEM WBIF ID

R0

-

R15

πpre

πpost

© 2017 Arm Limited 24

Memory

R0

-

R15
DecodeFetch

EX MEM WBIF ID

R0

-

R15

πpre

πpost

Pre Post_spe

Post_cp

Spec ==?

ARMResearch 25

Combinational
Verilog

ASL to
Verilog

Architecture
Specification

Specialize
Monomorphize

Constant Propagation
Width Analysis

Exception Handling
…

© 2017 Arm Limited 26

Arm CPUs verified with ISA-Formal

A-class
Cortex-A53
Cortex-A32
Cortex-A35
Cortex-A55
Next generation

R-class
Cortex-R52
Next generation

M-class
Cortex-M4
Cortex-M7
Cortex-M33
Next generation

Cambridge Projects

Rolling out globally to other design centres
Sophia, France - Cortex-A75 (partial)
Austin, USA - TBA
Chandler, USA - TBA

© 2017 Arm Limited 27

© 2017 Arm Limited

Formal validation
of specifications

“Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

© 2017 Arm Limited 29

Suppose…

Last year: audited all accesses to privileged registers
• Specification: Added missing privilege checks
• Testsuite: Added new tests to test every privilege check
• Formal testbench: Verify every check

This year: add new instruction but accidentally omit privilege check

How many tests in the test suite will fail on new specification?

© 2017 Arm Limited 30

Executable Specification

Defines what is allowed
Animation → Check spec matches expectation
Testable → Compare spec against implementation

© 2017 Arm Limited 30

Executable Specification

Defines what is allowed
Animation → Check spec matches expectation
Testable → Compare spec against implementation

Does not define what is not allowed
e.g., Impossible states, impossible actions/transitions, security properties
No redundancy
Problem when extending specification

© 2017 Arm Limited 31

Creating a specification of disallowed behaviour

Where to get a list of disallowed behaviour?
How to formalise this list?
How to formally validate specification against spec of disallowed behaviour?

© 2017 Arm Limited 32

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

© 2017 Arm Limited 32

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State Change X
Event A
Event B
State Change C
Event D

R

© 2017 Arm Limited 32

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State Change X
Event A
Event B
State Change C
Event D

R

And cannot happen any other way

© 2017 Arm Limited 32

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State Change X
Event A
Event B
State Change C
Event D

R

Rule R: X → A ∨ B ∨ C ∨ D

And cannot happen any other way

© 2017 Arm Limited 33

State Change X Exit from lockup Fell(LockedUp)

Event A A Cold reset Called(TakeColdReset)

Event B A Warm reset Called(TakeReset)

State Change C Entry to Debug state Rose(Halted)

Event D Preemption by a higher
priority processor
exception

Called(ExceptionEntry)

© 2017 Arm Limited 34

Rule JRJC
Exit from lockup is by any of the following:

• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

© 2017 Arm Limited 34

Rule JRJC
Exit from lockup is by any of the following:

• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

Fell(LockedUp) → Called(TakeColdReset)
 ∨ Called(TakeReset)
 ∨ Rose(Halted)
 ∨ Called(ExceptionEntry)

© 2017 Arm Limited 34

Rule JRJC
Exit from lockup is by any of the following:

• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

Fell(LockedUp) → Called(TakeColdReset)
 ∨ Called(TakeReset)
 ∨ Rose(Halted)
 ∨ Called(ExceptionEntry)

__Called_TakeColdReset = FALSE;
__Called_TakeReset = FALSE;
__Called_TakeExceptionEntry = FALSE;
__Past_LockedUp = LockedUp;
__Past_Halted = Halted;

assert((__Past_LockedUp > LockedUp)
 ==>
 (__Called_TakeColdReset
 || __Called_TakeReset
 || __Past_Halted < Halted
 || __Called_ExceptionEntry));

© 2017 Arm Limited 35

Rule VGNW
Entry to lockup from an exception causes
• Any Fault Status Registers associated with the exception

to be updated.
• No update to the exception state, pending or active.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to become UNKNOWN.

In addition, HFSR.FORCED is not set to 1.

© 2017 Arm Limited 35

Rule VGNW
Entry to lockup from an exception causes
• Any Fault Status Registers associated with the exception

to be updated.
• No update to the exception state, pending or active.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to become UNKNOWN.

In addition, HFSR.FORCED is not set to 1.

Out of date
Misleading

Ambiguous
Untestable

© 2017 Arm Limited 36

Arithmetic operations
Boolean operations
Bit Vectors
Arrays
Functions
Local Variables
Statements

Assignments
If-statements
Loops
Exceptions

Arm Specification
Language SMT

Arithmetic operations
Boolean operations
Bit Vectors
Arrays
Functions
Local Variables
Statements

Assignments
If-statements
Loops
Exceptions

© 2017 Arm Limited

Bug in Spec

37

Formally Validating Specifications

v8-M Spec

Verification

CEX

Property Proof

© 2017 Arm Limited

Bug in Spec

12 Bugs
Found
so far

37

Formally Validating Specifications

v8-M Spec

Verification

CEX

Property Proof

© 2017 Arm Limited 38

© 2017 Arm Limited 39

Lexer
Parser

Typechecker

Interpreter

Verilog
Backend

C
Backend

Test
Coverage

Simulation
Trace

ASL Spec

SMT
Backend

ARM
Test Suite

Architecture
Properties

Bounded
Model

SMT
Solver

Arm
Processor

© 2017 Arm Limited 40

Public release of machine readable Arm specification

Enable formal verification of software and tools
Releases

April 2017: v8.2
July 2017: v8.3

Working with Cambridge University REMS group to convert to SAIL
Backends for HOL, OCaml, Memory model, (hopefully Coq too)

Tools: https://github.com/alastairreid/mra_tools

Talk to me about how I can help you use it

https://github.com/alastairreid/mra_tools

© 2017 Arm Limited 41

Potential uses of processor specifications

Verifying compilers
Verifying OS page table / interrupt / boot code
Verifying processor pipelines
Verification and discovery of peephole optimizations
Automatic generation of binary translators
Automatic generation of test cases
Decompilation of binaries
Abstract interpretation of binaries
etc.

© 2017 Arm Limited

How can you trust formally
verified software?

© 2017 Arm Limited 43

How can you trust formal specifications?

Test the specifications you depend on
Ensure specifications have multiple uses
Create meta-specifications

https://xkcd.com/1416/

Hiring in Security and Correctness group — contact me

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!

© 2017 Arm Limited 44

@alastair_d_reid

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016

“Who guards the guards? Formal Validation of ARM v8-M Specifications,” OOPSLA 2017
“End to End Verification of ARM processors with ISA Formal,” CAV 2016

