How Can You Trust
Formally Verified
Software?

Alastair Reid

Arm Research
@alastair_d_reid

VE-> The
0 . "€re
B 17-99 'nPUt nv
urtrer ov Wil id f
G n LibTI d ree -
heap 4 rem ag
boy,r CVerfio,, € denjy, -Printy
ng Oow re lal F
CVE-20,5 t2p |, : ;ead iy COUId g, 2 heap. ice thuctyrg
l‘ ’ CW Arbitrg ;Vrite o FFCle . to differe :se b ttacy hat leags
Ode = I , t
CVE- % . %8 exacy 29, or 5 Mval '”ag:ro rflo
w 9685 Omet er st ti ra do id f S. Fo j
CVE~2 I € Cé-e ’ CIOs Ub/ fi € In TIFreXafn
% drivey 5 9/com > Mem g ny 2n_ eoseG‘.”'
CVE‘% dn all N leay Progq+ fter it h neCt’Ons, . Ive thee."” Memq
~9682 I"Iver Caal omrn a ‘TP/
@ NAAE CVE_~- In M lean . Prj lm = — £ P /2 han..
CVE-2017-9992 Heap-based buffer overflow in the decode_ddsl function in libavcodec/dfa.cin FFmpeg bab) cou; via a
before 2.8.12, 3.0.X before 3.0.8, 3.1.X before 3.1.8, 3.2.X before 3.2.5, and 3.3.x before 9 caygse
3.3.1 allows remote attackers to cause a denial of service (application crash) or possibly 'Vli): 2.4.2¢
have unspecified other impact via a crafted file. . ur. Woulq ed time
. . congis:
CVE-2017-9991 Heap-based buffer overflow in the xwd_decode_frame function in I|bavcodec/xwddec.c in Ndition in 5 “to Jltin f
A FEmpecima ~ o 15 2 N x hefore 3.0.8, 3.1.X before 3.1.8, 3.2.x before 3.2.5, and 3.3.X Congjp: Wiay ssue
before ~++ -z ~~msica (gpplication crash) or 'tion a Us
ossibl B ary
P BUffer Overflow VUIner bolo o . :)nd/tlon i)ba\(ét
CVE-2017-9990 Stack-basea puiier uver - dDl ItIESn libavcodec/xpmdec.c in N twe KG A al
FFmpeg 3.3 before 3.3.1 allows remote attackers to cause @ uenal of service (application Plore,. SL ows
crash) or possibly have unspecified other impact via a crafted file. a:/pm tzy
: n etj ‘
CVE-2017-9987 Thereis a heap-based buffer overflow In the function hpel_motion IN mpegwdeo_motlon.c in tsy ru,,t':"' uble
libav 12.1. A crafted input can lead to a remote denial of service attack. ny ol of iIsion

CVE-2017-9948 A stack buffer overflow vulnerability has been discovered in Microsoft SKype 7.2, 7.35, and 'éf%i%;%ﬁf hat

CvVEeE- gVl / “="—

7.36 before 7.37, involvin MSFTEDIT.DLL mishandling of remote RDP cli board content _ . ument coming
ithi if a pointer arg b
5o] ~_ within the message box. I _ JERSp— . ncor message: leed
urce: MIIRE Last Mo - qQualcomm P gucts With Andm\c\l, :Je's\:a:n Lninitialized structure t© \°gd re ArchestrA Logger Vers.‘o\nsgger
2 nall QU g ; driver ma . .- Wonderwa ash the 10
-017-968 is invalid, @ . ider Electric acker to €
CUE=2 i usersPac jssue Was discovered 1N chne\,u\nerabi\'\tv could allow an @ he wonderware

. rence \ X e ce . at use
A Null Pom;er Delreafe or. The null pointer deT= 1 g-viewing (applca BT vice 1S Lnavailable):

Formal verification

Of libraries and apps

Verified

Software
Toolchain

3 © 2017 Arm Limited

Of compilers

COMPCERT

[\/cu
fied
LLVM

=N /
|:

* " A Verified Implementation of ML

Of operating systems

, Security. Performance. Proof.

CERTIKOS

arm

4

Fonseca et al., An Empirical Study on the Correctness of Formally Verified Distributed Systems, Eurosys ‘17

2017 Arm Limited

4)

Formally
Verified
Software
a N\ N\)
Verification Shim Formal
Tool Code Specifications
_ I\ VAN _J

arm

Takeaway #1: 3 key questions to ask

1. What specifications does your proof rely on?

2. Why do you trust those specifications?

3. Does anybody else use these specifications?

5 © 2017 Arm Limited q rm

Takeaway #2: Specifications must have multiple uses

arm

6 © 2017 Arm Limited

Takeaway #2: Specifications must have multiple uses

7 © 2017 Arm Limited q r m

How can you trust formally verified software?

How can you trust formally verified software?

How can you trust formal specifications?
Testing specifications
Verifying processors
Verifying specifications

How can you trust formally verified software?

8 © 2017 Arm Limited q rm

Arm Architecture Reference Manual (ARMARM)

NS
‘§ ARCHITECTURE
o REFERENCE
MANUAL

SECOND Epvrxos

Davip Seal

9 © 2017 Arm Limited

6400

Pages

4800

3200

1600

0

1996

T/'

|

=

2007

2018

32-bit / 64-bit Instructions
Exceptions / Interrupts
Privilege / Security
Virtual Memory
System registers
Debug / Trace
Profiling

arm

English prose

RjrjC Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.

. Entry to Debug state.

. Preemption by a higher priority exception.
RyvoNw Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.
. No update to the exception state, pending or active.
. The PC to be set to OxEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.
10 © 2017 Arm Limited q rm

Pseudocode

Encoding A1 ARMv4* ARMvST*, ARMv6e*, ARMv7
ADC{S}<C> <Rd>,<Rn>,<Rm>{,<shift>}

3130202827 262524232221 2019181716 151413 121110 9 8 7 6 5 4 3 2 1 0O
cond O 0jOj0 1 0 1S Rn Rd imm3 type | 0 Rm

if Rd == *1111" && S = ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) - DecodeImmShift(type, imm5);

if ConditionPassed() then
EncodingSpecificOperations();
shifted - Shift(R[m], shift_t, shift_n, APSR.(C);
(result, carry, overflow) - AddwithCarry(R[n], shifted, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
glse
R[d] = result;
if setflags then
APSR.N = result<3ls;
APSR.Z = IsZeroBit(result);
APSR.C - carry;
APSR.V = overflow;

11 © 2017 Arm Limited q rm

Arm Architecture Specification Language (ASL)

Indentation-based syntax
Imperative
First-order
Strongly typed (type inference, polymorphism, dependent types)
Bit-vectors
Unbounded integers
Infinite precision reals
Arrays, Records, Enumerations

Exceptions

12 © 2017 Arm Limited q rm

[ASL Spec

-

)
b,

13 © 2017 Arm Limited

-

Lexer
Parser

~

Typechecker

~

_

_

C
Backend

Interpreter

A

-

arm

Architectural Conformance Suite

Processor architectural compliance sign-off

Large
e v8-A 11,000 test programs, > 2 billion instructions

e v8-M 3,500 test programs, > 250 million instructions

Thorough

e Tests dark corners of specification

14 2017 Arm Limited q rm

15

100

75

50

25

© 2017 Arm Limited

Testing Pass Rate

— ISA

15

(Artists Impression)

— Supervisor

Hypervisor/Security

Time

arm

v8-A

100%

75%

50%

25% — % 1

0%

16 © 2017 Arm Limited q r m

16

Measuring architecture coverage of tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf

bits(N) FPRSqrtStepFused(bits(N) opl, bits(N) op2)
assert N IN {32, 64}:
bits(N) result;
opl = FPNeg(opl); // per FMSUB/FMLS
(tvpel.signl valuel) = FPUnpack(opl, FPCR);
(tvpe2.sign2 value2) = FPUnpack(op2, FPCR);
(done result) = FPProcessNaNs(typel, tvpe2. opl, op2, FPCR);
if !done then
infl = (typel == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zerol = (tvpel == FPType_Zero);
zero2 = (tvpe2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
result = FPOnePointFive('0");
elsif infl || inf2 then
result = FPInfinity(signl EOR sign2, N);
else
// Fully fused multiply-add and halve
result_value = (3.0 + (valuel * value2)) / 2.0;
if result_value == 0.0 then
// Sign of exact zero result depends on rounding mode
sign = if FPCRRounding() == FPRounding NEGINF then 'l' else '0';
result = FPZero(sign, N);
else
result = FPRound(result_value, FPCRRounding()):
return result;

17 © 2017 Arm Limited q rm

Ilrlr

18 © 2017 Arm Limited a r m

4 4 + + 4 4 + +

“End to End Verification of ARM processors with ISA Formal,” CAV 2016

+ + + + + + + +

+ + + + + + + +

Formal verification

of processors |

© 2017 Arm Limited
+ 4 i i + 4 i i

arm

eeeeee

Checking an instruction

CMPLDR ADD [STRBNE |

N

Context

The Architecture for the Digital World® ARM

RO
R15

MEM wB
/

Al
%

EX

Memory

}>
)

RO
R15

ID

IF

.—’ — Decode

arm

4 N

AI‘Ch.IteCtl.Jr'e ASL. to Combir?ational
Specification Verilog Verilog
_ J
Specialize

Monomorphize
Constant Propagation
Width Analysis
Exception Handling

ARMResearch 22 The Architecture for the Digital World® ARM

Arm CPUs verified with ISA-Formal

f A-class R-class M-class \

Cortex-A53 Cortex-R52 Cortex-M4
Cortex-A32 Next generation Cortex-M7
Cortex-A35 Cortex-M33
Cortex-A55 Next generation

k Next generation Cambridge Projects/

Rolling out globally to other design centres

Sophia, France - Cortex-A75 (partial)
Austin, USA - TBA

Chandler, USA - TBA
23 © 2017 Arm Limited q rm

24 © 2017 Arm Limited a r m

+ 4 + + + + + +

“Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

+ + + + + + + +

+ + + + + + + +

Formal validation

of specifications |

© 2017 Arm Limited
+ + 4 4 + i 4 4

arm

Suppose...

Last year: audited all accesses to privileged registers
e Specification: Added missing privilege checks
e Testsuite: Added new tests to test every privilege check

e Formal testbench: Verify every check

This year: add new instruction but accidentally omit privilege check

How many tests in the test suite will fail on new specification?

26 © 2017 Arm Limited q rm

Can we formally verify specification?

Specification of the specification

Disallowed behaviour
Invariants

Cross-cutting properties

Tools that can prove properties of ASL specifications

27 © 2017 Arm Limited q rm

RjrjC Exit from lockup 1s by any of the following:
. A Cold reset.
. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.

Input (¢ L) Output
State O

28 © 2017 Arm Limited

arm

Exit from lockup is by any of the following: rule lockup_exit
. A Cold reset.

assume Fell(LockedUp);
. A Warm reset.

Called(TakeColdReset)
. Entry to Debug state.

. Preemption by a higher priority exception. v Called(TakeReset)
v Rose(InDebugState())

v Called(ExceptionEntry);

29 © 2017 Arm Limited q rm

Converting ASL to SMT

Functions

Local Variables

Statements
Assignments
If-statements

Exceptions

Arithmetic operations

Boolean operations

Bit Vectors

Arrays

30 © 2017 Arm Limited

Arithmetic operations
Boolean operations
Bit Vectors

Arrays

arm

Formally Validating Specifications

v8-M Spec

Property

Verification

31 © 2017 Arm Limited

12 Bugs
Found
so far

Proof

arm

Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

o WEW
. The PC to be set to OXEFFFFFFE.

. EPSR.IT to be become UNKNOWN.
In additioni HFSR.FORCED ieitetetotstomlm= 5 not changed.

rule lockup entry
assume Rose(LockedUp);
assume -Called(TakeReset);

property a HaveMainExt() = CFSR != 9;

Debug view of Loopacty bl StablelExabanding)

Roopacty b2 StablatExnlciing)\
property ¢ ((PC)== OXEFFFFFFE;
property e msbliablalORiohbmnmms
(Stable(HFSR.FORCED);)

32 © 2017 Arm Limited

arm

33 © 2017 Arm Limited a r m

Public release of machine readable Arm specification

Enable formal verification of software and tools
Releases
April 2017: v8.2
July 2017:v8.3
Working with Cambridge University REMS group to convert to SAIL
Backends for HOL, OCaml, Memory model, (Coq just started)
Tools: https://github.com/alastairreid/mra_tools

Talk to me about how | can help you use it

34 © 2017 Arm Limited q rm

https://github.com/alastairreid/mra_tools

How can you trust formally verlfled
~ software?

© 2017 Arm Limited

arm

How can you trust formal specifications?

Test the specifications you depend on
Ensure specifications have multiple uses

Create meta-specifications

T 200M

https://xkcd.com/1416/

36 © 2017 Arm Limited q r m

Thank You! @alastair_d_reid

Danke!
arm

Mercil
159 157 |
HYHES!

G ra C|a S | “Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016
. “End to End Verification of ARM processors with ISA Formal,” CAV 2016
K| |tOS I “Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

© 2017 Arm Limited

