How can you trust formally

verified software!

Alastair Reid

alastair.reid@arm.com
@alastair d reid

ARMResearch The Architecture for the Digital World® ARM

mailto:alastair.reid@arm.com?subject=

COMPCERT

COMPILERS YOU CAN FORMALLY TRUST

[...] By applying program proof
techniques to the source code
of the compiler, we can prove,
with mathematical certainty,
that the executable code
produced by the compiler
behaves exactly as specified
by the semantics of the
source~C~program, therefore
ruling out all risks of
miscompilation.

http://compcert.inria.fr/motivations.html

ARMResearch

Microsoft research project IronFleet
advances bug-free software systems

[...] recent advances have
made it possible to write
smaller-scale software that
can be mathematically
proven not to have the
type of imperfections that
make a program freeze up
or leave it vulnerable to a
security attack.

https://www.microsoft.com/en-us/research/blog/
microsoft-researchers-explore-a-practical-way-to-
build-bug-free-software/

Security. Performance. Proof.

selL4 is unique: it is the only
operating system that has
undergone formal verification,
proving bug-free implementation,
and enforcement of spatial isolation
(data confidentiality and integrity).

https://sel4.systems/Info/Docs/sel4-brochure.pdf

The Architecture for the Digrtal World® ARM

http://compcert.inria.fr/motivations.html
https://sel4.systems/Info/Docs/seL4-brochure.pdf

COMPCERT

Release 3.0, 2017-02-10

Bug fixing:

Issue #155: on ARM, assembly errors caused by large jump tables for
"switch" statements and overflow in accessing constant pools.

Issue #151: large inductive definition causes a fatal error in

32-bit versions of Coq.

Issue #143: handle "%1f" printf() format in the reference interpreter
Issue #138: struct declarations in K&R function parameters were ignored.
Issues #110, #1111, #113, #1114, #115, #119, #120, #121, #122, #123, #124,
#125, #126, #127, #128, #129, #130, #133, #138, #144: various cases

of internal errors and failed assertions that should have been

proper errors instead.

For _ builtin memcpy aligned, size and alignment arguments of 64-bit
integer type were causing a fatal error on a 32-bit target.

ARM and x86 ports: wrong register allocation for some calls to

function pointers.

ARMResearch ;

COMPILERS YOU CAN FORMALLY TRUST

Release 2.7.1, 2016-07-18

Bug fixing:
- Fixed a compile-time assertion failure involving builtins
taking a 64-bit integer parameter and given an unsigned 32-bit
integer
argument.
- Updates to the Cminor parser.

Release 2.7, 2016-06-29

Bug fixing:

- Some declarations within C expressions were incorrectly ignored
(e.g. "sizeof(enum e {A})").

— ARM in Thumb mode: incorrect "movs" instructions involving the stack
pointer register were generated.

The Archrtecture for the Digrtal VWorld® ARM

Verdi

Formally Verifying Distributed Systems

executable code and run their systems on real networks.2 Assuming the network semantics
correctly describes all possible behaviors of the system's environment, Verdi guarantees that ®
holds on all executions of the system.s

3. This also assumes the correctness of Verdi's trusted computing base (TCB), which includes:
the soundness of Coqg's logic, the correctness of Coq's proof checker, the correctness of
Verdi's shim, and the correctness of OCaml's compiler and runtime, etc.€

ARMResearch The Architecture for the Digital World® ARM

An Empirical Study on the Correctness of
Formally Verified Distributed Systems

Pedro Fonseca

X1 Wang
University of Washington

Kaiyuan Zhang

Arvind Krishnamurthy

Bug Component Trigger Incorrect results Crash Impact Reported Fixed PK
Specification
I1 High-level specification Packet duplication : - Void exactly-once guarantee v - v
C4 Test case - - - Void client guarantee v v -
Verification tool
I2 Verification framework Incompatible libraries - - Verify incorrect programs v v v
I3 Verification framework Signal delivered - - Verify incorrect programs v v -
I4 Binary libraries - - - Prevent verification - v
Shim layer
V1 Client-server communication Partial socket read : v Crash server v - v
V2 Client-server communication Client input v v Inject commands v - v
V3 Recovery Replica crash : v Crash server v - v
V4 Recovery Replica crash v v Crash server v - v
V5 Recovery OS error during recovery v - Incomplete recovery v - v
V6 Server-server communication Lagging replica : v Crash server - v v
V7 Server-server communication Lagging replica - v Crash server - v v
V8 Server-server communication Lagging replica - v Crash server v - -
C1 Server-server communication Packet duplication v - Violate causal consistency v - v
C2 Server-server communication Packet loss : v Return stale results v - v
C3 Server-server communication Client input v v Hang and corrupt storage v - v

Figure 3: Bugs that our analysis found in the high-level specification, verification tool, and shim layer of verified distributed systems. Some
bugs caused servers to crash or to produce incorrect results, and most bugs are detected by our testing toolchain (PK). We reported all listed

bugs to developers, except bug V6 and bug V7, which the developers had already fixed. | | o RM
ARMResearch The Architecture for the Digital World® — #=&

5

An Empirical Study on the Correctness of
Formally Verified Distributed Systems

Pedro Fonseca Kaiyuan Zhang Xi Wang Arvind Krishnamurthy
University of Washington

LogCabin ZooKeeper Etcd Cassandra | Total

Communication 4 1 3 9 17
Recovery 0 1 0 7 8

Logging / snapshot 5 5 6 5 21
Protocol ‘ 1 2 8 12
Configuration 1 2 0 0 3
Client library 1 23 11 7 42
Reconfiguration ‘ 6 8 17 32
Management tools 22 21 116 160
Single-node storage 1 18 11 200 230
Concurrency 3 1 2 18 24
Total 23 80 65 387 555

Figure 13: Sample of known bugs from the bug reports of unverified
distributed systems.

ARMResearch The Architecture for the Digital World® ARM

An Empirical Study on the Correctness of
Formally Verified Distributed Systems

Pedro Fonseca Kaiyuan Zhang Xi Wang Arvind Krishnamurthy
University of Washington

Developer

. 5

<Specification>

L 4

Verified distributed -
system code (Aux. tools) Verifier (core)

t

(Shim layer >

\ 4
0S

ARMResearch The Architecture for the Digital World® ARM

Application Application Spec

Library Library Spec
OS implements Posix Spec
C Standard

Compiler

Processor

CPU Architecture

ARMResearch The Architecture for the Digital World® ARM

Application Spec

Library Spec

Trusteo
C()mpljtiﬂg Posix Spec

Base C Standard

CPU Architecture

ARMResearch The Architecture for the Digital World® ARM

Testing and Formal Validation of Processor Specifications

Formally Validating Specifications (submitted)

ARMResearch The Architecture for the Digital World® ARM

10

ISA Specification

Encoding T3

MOV{S}<c>.W <Rd>,<Rm>

1514 131211 10

ARMvV7-M

1514131211 10 9

8

111 0 1

0

9
1

8
0

7
0

6
1

S
0

4
S

3 2
1 1

1
1

0
1

(0)

0 00

Rd

d = UInt(Rd); m = UInt(Rm);
if setflags & (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;

if lsetflags && (d == 15 || m==15 || (d == 13 & m == 13)) then UNPREDICTABLE;

if ConditionPassed() then
EncodingSpecificOperations();
result = R[m];

if d == 15 then
ALUWritePC(result);

else
R[d] =

ARMResearch

result;

if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
// APSR.C unchanged
// APSR.V unchanged

setflags = (S = '1");

// setflags is always FALSE here

11

System Specification

AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)

HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
(HaveEL(EL2) && !'IsSecure() && PSTATE.EL IN {ELO,EL1} &&
(HCR_EL2.TGE == "1" || IsSecondStage(fault)));

route_to_el3
route_to_el?2

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress);

if PSTATE.EL == EL3 || route_to_el3 then

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else

AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

The Architecture for the Digrtal World® ARM

ARM Spec (lines of code)

Instructions 26.000 6.000
Int/FP/SIMD ’ |

Exceptions 4,000 3,000
Memory 3,000 1,000

Debug 3,000 1,000
Misc 5,500 2,000
(Test support) 1,500 2,000
43,000 15,000

ARMResearch . The Architecture for the Digrtal World® ARM

Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture, FMCAD 2016

Testing Specifications

Specification Bug

lll—) Test Program

; V8-A/|V| SpECiﬁCaﬁOn <

ASL Interpreter/Compiler

Test Bug
11,000 test programs

2 Billion instructions

ARMResearch The Architecture for the Digital World® ARM

13

End to End Verification of ARM Processors with ISA-Formal, CAV 2016

Formally Validating Processors

V8- A/NI Spec v8-A/M Spec CEX Processor Bug
(ASL) (Verilog) Processor
—_—
ASL to Model Checker
Verllog Speciﬁcation Bug

ARM

ARMResearch The Architecture for the Digital World®

Finding Bugs in Specs

(Artists Impression)

— Syntax/Typecheck — Testing Model Checking Processors — QCC

Bugs
Found

100

10

1

Time
ARMResearch s The Architecture for the Digrtal VWorld® ARM

Formally Validating Specifications

v8-M Spec
CEX ,
— Verification —> BugIn Spec

Property

ARMResearch iy The Architecture for the Digrtal VWorld® ARM

Exception Exception

Entry Return
Push Pop
Stack Stack
Read

Exception

Vector

ARMResearch The Architecture for the Digital World® ARM

17

Derived Exception

ARMResearch The Architecture for the Digital World® ARM

18

Lockup

ARMResearch The Architecture for the Digital World® ARM

19

Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

. No update to the exception state, pending or active.
. The PC to be set to OxEFFFFFFE.
. EPSR.IT to be become UNKNOWN.
ARMvV8-M Architecture In addition, HFSR.FORCED is not set to 1.
Reference Manual
When the PE 1s in lockup:

. DHCSR.S LOCKUP reads as 1.
. The PC reads as OxEFFFFFFE. This 1s an XN address.

. The PE stops fetching and executing instructions.
. If the implementation provides an external LOCKUP signal, LOCKUP is asserted HIGH.

Exit from lockup is by any of the following:

. A Cold reset.

. A Warm reset.

. Entry to Debug state.

. Preemption by a higher priority exception.

ARMResearch The Architecture for the Digital World® ARM

20

rule lockup entry

Entry to lockup from an exception causes: assume Rose(LockedUp);

. Any Fault Status Registers associated with the exception to be updated. assume —Called(TakeReset);

. No update to the exception state, pending or active.

. The PC to be set to OxEFFFFFFE. .

. EPSR.IT to be become UNKNOWN. property a HaveMainExt() = CFSR !=0;
In addition, HFSR.FORCED is not set to 1. property bl Stable(ExnPending):

property b2 Stable(ExnActive);
property ¢ RName[RNamesPC| = OXEFFFFFFE;
property ¢ Stable(HFSR.FORCED);

ARMResearch ” The Architecture for the Digital VWorld® ARM

Exit from lockup is by any of the following: rule lockup_exit

. A Cold reset. assume Fell(LockedUp);
. A Warm reset.

. Entry to Debug state.
. Preemption by a higher priority exception.

Called(TakeColdReset)
v Called(TakeReset)

v Rose(Halted)
v Called(ExceptionEntry);

ARMResearch . The Architecture for the Digital VWorld® ARM

When the PE 1s in lockup:
. DHCSR.S LOCKUP reads as 1.
. The PC reads as OxEFFFFFFE. This 1s an XN address.

. The PE stops fetching and executing instructions.
. If the implementation provides an external LOCKUP signal, LOCKUP is asserted HIGH.

rule lockup

assume LockedUp;

invariant a DHCSR.S LOCKUP=1;
invariant b PC == OxEFFFFFFE;
property c

assume Past(LockedUp);
- Called(FetchlInstr) A =Called(DecodeExecute);

ARMResearch s The Architecture for the Digrtal World® ARM

ARMResearch The Archrtecture for the Digrtal VWorld® ARM

25

ARMResearch The Archrtecture for the Digrtal VWorld® ARM

26

ExceptionEntry

Fetchlnstr

ARMResearch The Archrtecture for the Digrtal VWorld® ARM

27

Formally Validating Specifications

v8-M Spec 12 Bugs
CEX

ARMResearch o The Architecture for the Digrtal VWorld® ARM

Formally Validating Specifications

v8-M Spec
(ASL)

Rule CEX :
—> Verlﬁcatlon —> BugIn Spec

+ Invarlants

ASL to SMT

ARMResearch o The Architecture for the Digrtal VWorld®

ARM

Formally Validating Specifications

v8-M Spec
-
Condition (SMT CEX
Rule () ———— Bugin Spec

—
+ Invariants
SMT Solver
ASL to SMT

ARMResearch The Architecture for the Digital World® ARM

30

Formally Validating Specifications

v8-M Spec Bue in Rul
ug in Rule
- /
Condition (SMT CEX
Rule () Z—— Bugin Spec

——

+ Invariants
SMT Solver
ASIL to SMT Bug in Invariants

ARMResearch The Architecture for the Digital World® ARM

TakeColdReset TopLevel

Asserts Bounds Invariant Asserts Bounds Invariant Properties
Configuration = NS
Total 25 2 32 41 2 32 25
Passed 25 2 32 41 2 32 21
Failed 4
Timeout
Configuration = S
Total 23 3 32 36 3 32 25
Passed 23 3 32 33 3 28 19
Failed
Timeout 3 4 6
ARMResearch . The Architecture for the Digrtal World® ARM

Cumulative number of properties proven

ARMResearch

NS Invariants (Reset)
NS Assertions (Reset)

S Invariants (Reset)

S Assertions (Reset)

NS Invariants (TopLevel)

NS Assertions (TopLevel)
NS Properties (TopLevel)
S Invariants (TopLevel)
S Assertions (TopLevel)
S Properties (TopLevel)

Testing and Formal Validation of Processor Specifications

Generating Testcases
Security Checking
Booting an OS
Fuzzing an OS

ARMResearch y The Architecture for the Digital VWorld® ARM

Testcase Generation

Branch

/Coverage
TestCase —>| Vv8-A/M Speuﬁcatlon
ASL Interpreter \
Symbolic

Dataflow

Graph
SMT Solver &_/

The Architecture for the Digital World®

ARM

ARMResearch

35

Security Checking

Test Program
>ymbolic Information
v8-M Specification —— > Dataflow ——> Clow
Graph
ASL Interpreter

ARMResearch The Architecture for the Digital World® ARM

36

(Work by Jon French and Nathan Chong)

Booting an OS

Application
mbed OS

v8-M Specification

ASL Interpreter/Compiler

ARMResearch The Architecture for the Digital World® ARM

37

(Work by Jon French and Nathan Chong)

Fuzzing the mbed OS

Crash/Fail
TestCase —mm—— Random Application /
mbed OS
v8-M SpeC|ﬁcat|on \
Branch
ASL Interpreter/CompHer Coverage

AFL Fuzzer 4//

The Architecture for the Digital World®

ARM

ARMResearch

38

Testing Specifications

[Test Suite

\ 4

Test Program

\

|

\

U

ARMResearch

ARMResearch

]]h] v8-A/M Specification

-
<.

ASL Interpreter/Compiler

21

Booting an OS

Application

mbed OS

v8-M Specification

ASL Interpreter/Compiler

The Architecture fort

TestCase

ARMResearch

ARMResearch

Bug in Spec

Bug in Test

Formally Validating Specifications

The Architecture for the Digital World® ARM YMResearch

Fuzzing the mbed OS

r
-_—

39

v8-M Spec) .
(ASL;) Bug in Rule v8-A/M Spec
Verification ASL)
Rule Condition (SMT) CEX _ L
- > Bug in Spec (
+ Invariants ASL to
SMT Solver Verilog
ASL to SMT Bug in Invariants

The Architecture for the Digital World® ARM ARMResearch

26

Testcase Generation

Branch
Coverage
TestCase —>[v8-A/M Specification]
[ASL Interpreter/Compiler]\
Symbolic
Dataflow

Graph

[sMmT solver | J

Verifying Processors

Bug in
() yProcessor
v8-A/M Spec ARM
(Verilog) Processor
Model Checker CEX Bug in
|) Specification

The Architecture for the Digital World® ‘

26

Security Checking

ARMResearch » The Architecture for the Digital World® ARM
.) Crash/Fail
Random Application
. J Test Program Sumboli
mbed OS L) ymuolic Information
;\ v8-A/M Specification —> Dataflow Flow
v8-M Specification (— Graph
J ASL Interpreter/Compiler
[ASL Interpreter/Compiler | Branch ‘ ‘
| nterpreter/Compiler | Coverage
[AFL Fuzzer] 4—/
The Architecture for the Digital World® ARM ARMResearch The Architecture for the Digital World® ARM

The Architecture for the Digital World® ARM

ARMResearch

Creating a Virtuous Cycle

Random
Instruction
Sequences

Specification <
Verification

Boot
OS

40

FiIrmware

\Y[.
AR Information

Flow
Analysis

Conformance
TestSuite

> Processor
Spec Verification

Testcase

Fuzzing
Generation

The Architecture for the Digital World® ARM

How can you trust formally verified software!

Don’t forget the TCB

Specifications — The Next Formal Verification Bottleneck
Too large to be “obviously correct”
Testing
Formally validating implementations

Formally validating specifications

Hiring in Security and Correctness group — contact me

ARMResearch - The Architecture for the Digital VWorld® ARM

=gl

alastair.reid@arm.com
@alastair d reid

