
ARMResearch

How can you trust formally
verified software?

Alastair Reid
alastair.reid@arm.com

@alastair_d_reid

mailto:alastair.reid@arm.com?subject=

ARMResearch 2

[…] By applying program proof
techniques to the source code
of the compiler, we can prove,
with mathematical certainty,
that the executable code
produced by the compiler
behaves exactly as specified
by the semantics of the
source~C~program, therefore
ruling out all risks of
miscompilation.

http://compcert.inria.fr/motivations.html

seL4	is	unique:	it	is	the	only	
opera3ng	system	that	has	

undergone	formal	verifica3on,	
proving	bug-free	implementa3on,	
and	enforcement	of	spa3al	isola3on	
(data	confiden3ality	and	integrity).	

h?ps://sel4.systems/Info/Docs/seL4-brochure.pdf

[…] recent advances have
made it possible to write
smaller-scale software that
can be mathematically
proven not to have the
type of imperfections that
make a program freeze up
or leave it vulnerable to a
security attack.

https://www.microsoft.com/en-us/research/blog/
microsoft-researchers-explore-a-practical-way-to-

build-bug-free-software/

http://compcert.inria.fr/motivations.html
https://sel4.systems/Info/Docs/seL4-brochure.pdf

ARMResearch 3

Release 3.0, 2017-02-10
=======================

[…]

Bug fixing:

- Issue #155: on ARM, assembly errors caused by large jump tables for
 "switch" statements and overflow in accessing constant pools.
- Issue #151: large inductive definition causes a fatal error in
 32-bit versions of Coq.
- Issue #143: handle "%lf" printf() format in the reference interpreter
- Issue #138: struct declarations in K&R function parameters were ignored.
- Issues #110, #111, #113, #114, #115, #119, #120, #121, #122, #123, #124,
 #125, #126, #127, #128, #129, #130, #133, #138, #144: various cases
 of internal errors and failed assertions that should have been
 proper errors instead.
- For __builtin_memcpy_aligned, size and alignment arguments of 64-bit
 integer type were causing a fatal error on a 32-bit target.
- ARM and x86 ports: wrong register allocation for some calls to
 function pointers.

Release 2.7.1, 2016-07-18
=========================

[…]

Bug fixing:
- Fixed a compile-time assertion failure involving builtins
 taking a 64-bit integer parameter and given an unsigned 32-bit
integer
 argument.
- Updates to the Cminor parser.

Release 2.7, 2016-06-29
=======================

[…]

Bug fixing:
- Some declarations within C expressions were incorrectly ignored
 (e.g. "sizeof(enum e {A})").
- ARM in Thumb mode: incorrect "movs" instructions involving the stack
 pointer register were generated.

ARMResearch 4

ARMResearch 5

ARMResearch 6

ARMResearch 7

ARMResearch 8

Applica3on

Library

OS

Compiler

Processor

Applica3on	Spec

Library	Spec

Posix	Spec

C	Standard

CPU	Architecture

implements

ARMResearch 9

Applica3on	Spec

Library	Spec

Posix	Spec

C	Standard

CPU	Architecture

Trusted
Computing

Base

ARMResearch

Specifications are part of your TCB
Testing and Formal Validation of Processor Specifications

Testing Specifications (FMCAD 2016)
Formally Validating Processors (CAV 2016)

Formally Validating Specifications (submitted)

Generating Testcases
Security Checking
Booting an OS
Fuzzing an OS

The Virtuous Cycle

10

ARMResearch 11

ISA Specification System Specification

ARMResearch 12

v8-A v8-M
Instructions

Int/FP/SIMD
26,000 6,000

Exceptions 4,000 3,000
Memory 3,000 1,000
Debug 3,000 1,000
Misc 5,500 2,000

(Test support) 1,500 2,000
Total 43,000 15,000

ARM Spec (lines of code)

ARMResearch

Test	Suite

Testing Specifications

13

v8-A/M	Specifica3on

ASL	Interpreter/Compiler

Test	Program
Specifica3on	Bug

Test	Bug

Test	SuiteTest	SuiteTest	SuiteTest	Suite

Trustworthy	Specifica3ons	of	ARM	v8-A	and	v8-M	System	Level	Architecture,	FMCAD	2016

11,000	test	programs	
2	Billion	instruc3ons

ARMResearch

Formally Validating Processors

14

v8-A/M	Spec	
(ASL)

Model	Checker

Processor	Bug

	Specifica3on	Bug

ARM	
Processor

ASL	to	
Verilog

v8-A/M	Spec	
(Verilog)

CEX

CEX

End	to	End	Verifica3on	of	ARM	Processors	with	ISA-Formal,	CAV	2016

ARMResearch

Finding Bugs in Specs

15

1

10

100

Syntax/Typecheck Testing Model Checking Processors QCC

(Ar3sts	Impression)

Time

Bugs	
Found

ARMResearch

Formally Validating Specifications

16

v8-M	Spec

Verifica3on Bug	in	Spec
CEX

Property

ARMResearch 17

Excep3on	
Entry

Excep3on	
Return

Push	
Stack	

Read	
Excep3on	
Vector

Pop	
Stack

ARMResearch 18

Derived	Excep3on

ARMResearch 19

Lockup

ARMResearch 20

ARMResearch 21

rule lockup entry
assume Rose(LockedUp);
assume ¬Called(TakeReset);

property a HaveMainExt() ⇒ CFSR != 0;
property b1 Stable(ExnPending);
property b2 Stable(ExnActive);
property c RName[RNamesPC] = 0xEFFFFFFE;
property e Stable(HFSR.FORCED);

ARMResearch 22

rule lockup_exit
assume Fell(LockedUp);

Called(TakeColdReset)
∨ Called(TakeReset)
∨ Rose(Halted)
∨ Called(ExceptionEntry);

ARMResearch 23

rule lockup
assume LockedUp;

invariant a DHCSR.S_LOCKUP = 1;
invariant b PC == 0xEFFFFFFE;
property c

assume Past(LockedUp); 
¬ Called(FetchInstr) ∧ ¬Called(DecodeExecute);

ARMResearch 24

ARMResearch 25

ARMResearch 26

State

OutputInput

State

ARMResearch 27

State

OutputInput

State

Excep3onEntry

FetchInstr

ARMResearch

Formally Validating Specifications

28

v8-M	Spec

Verifica3on Bug	in	Spec
CEX

Property

12	Bugs	
Found	
so	far

ARMResearch

Formally Validating Specifications

29

v8-M	Spec	
(ASL)

Bug	in	Spec

ASL	to	SMT

CEXRule	
+	Invariants Verifica3on

ARMResearch

Formally Validating Specifications

30

v8-M	Spec	
(ASL)

SMT	Solver

Bug	in	Spec

ASL	to	SMT

Verifica3on	
Condi3on	(SMT) CEXRule	

+	Invariants

ARMResearch

Formally Validating Specifications

31

v8-M	Spec	
(ASL)

SMT	Solver

Bug	in	Rule

Bug	in	Spec

ASL	to	SMT

Verifica3on	
Condi3on	(SMT) CEX

Bug	in	Invariants

Rule	
+	Invariants

ARMResearch 32

ARMResearch 33

ARMResearch

Specifications are part of your TCB
Testing and Formal Validation of Processor Specifications

Testing Specifications (FMCAD 2016)
Formally Validating Processors (CAV 2016)

Formally Validating Specifications (submitted)

Generating Testcases
Security Checking
Booting an OS
Fuzzing an OS

The Virtuous Cycle

34

ARMResearch

Testcase Generation

35

v8-A/M	Specifica3on

ASL	Interpreter

Branch	
Coverage

Symbolic	
Dataflow	
Graph

TestCase

SMT	Solver

ARMResearch

Security Checking

36

v8-M	Specifica3on

ASL	Interpreter

Test	Program
Informa3on	

Flow

Symbolic	
Dataflow	
Graph

ARMResearch

Booting an OS

37

v8-M	Specifica3on

ASL	Interpreter/Compiler

mbed	OS

Applica3on

(Work	by	Jon	French	and	Nathan	Chong)

ARMResearch

Fuzzing the mbed OS

38

v8-M	Specifica3on

ASL	Interpreter/Compiler

mbed	OS

Random	Applica3on
Crash/Fail

Branch	
Coverage

TestCase

AFL	Fuzzer

(Work	by	Jon	French	and	Nathan	Chong)

ARMResearch 39

ARMResearch

Creating a Virtuous Cycle

40

ARM	
Spec

Fuzzing	
Firmware

ARM	
Conformance	
TestSuite

Processor	
Verifica3on

Boot	
OS

Informa3on	
Flow	

Analysis

Random	
Instruc3on	
Sequences

Testcase	
Genera3on

Specifica3on	
Verifica3on

ARMResearch

How can you trust formally verified software?

Don’t forget the TCB

Specifications — The Next Formal Verification Bottleneck

Too large to be “obviously correct”

Testing

Formally validating implementations

Formally validating specifications

Hiring in Security and Correctness group — contact me

41

End

42

alastair.reid@arm.com
@alastair_d_reid

