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[…] By applying program proof 
techniques to the source code 
of the compiler, we can prove, 
with mathematical certainty, 
that the executable code 
produced by the compiler 
behaves exactly as specified 
by the semantics of the 
source~C~program, therefore 
ruling out all risks of 
miscompilation. 

http://compcert.inria.fr/motivations.html

seL4	is	unique:	it	is	the	only	
opera3ng	system	that	has	

undergone	formal	verifica3on,	
proving	bug-free	implementa3on,	
and	enforcement	of	spa3al	isola3on	
(data	confiden3ality	and	integrity).	

h?ps://sel4.systems/Info/Docs/seL4-brochure.pdf

[…] recent advances have 
made it possible to write 
smaller-scale software that 
can be mathematically 
proven not to have the 
type of imperfections that 
make a program freeze up 
or leave it vulnerable to a 
security attack.

https://www.microsoft.com/en-us/research/blog/
microsoft-researchers-explore-a-practical-way-to-

build-bug-free-software/

http://compcert.inria.fr/motivations.html
https://sel4.systems/Info/Docs/seL4-brochure.pdf
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Release 3.0, 2017-02-10
=======================

[…]

Bug fixing:

- Issue #155: on ARM, assembly errors caused by large jump tables for
  "switch" statements and overflow in accessing constant pools.
- Issue #151: large inductive definition causes a fatal error in
  32-bit versions of Coq.
- Issue #143: handle "%lf" printf() format in the reference interpreter
- Issue #138: struct declarations in K&R function parameters were ignored.
- Issues #110, #111, #113, #114, #115, #119, #120, #121, #122, #123, #124,
  #125, #126, #127, #128, #129, #130, #133, #138, #144: various cases
  of internal errors and failed assertions that should have been
  proper errors instead.
- For __builtin_memcpy_aligned, size and alignment arguments of 64-bit
  integer type were causing a fatal error on a 32-bit target.
- ARM and x86 ports: wrong register allocation for some calls to
  function pointers. 

Release 2.7.1, 2016-07-18
=========================

[…]

Bug fixing:
- Fixed a compile-time assertion failure involving builtins
  taking a 64-bit integer parameter and given an unsigned 32-bit 
integer
  argument.
- Updates to the Cminor parser.

Release 2.7, 2016-06-29
=======================

[…]

Bug fixing:
- Some declarations within C expressions were incorrectly ignored
  (e.g. "sizeof(enum e {A})").
- ARM in Thumb mode: incorrect "movs" instructions involving the stack
  pointer register were generated.
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Specifications are part of your TCB
Testing and Formal Validation of Processor Specifications

Testing Specifications (FMCAD 2016)
Formally Validating Processors (CAV 2016)

Formally Validating Specifications (submitted)

Generating Testcases
Security Checking
Booting an OS
Fuzzing an OS

The Virtuous Cycle
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ISA Specification System Specification
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v8-A v8-M
Instructions

Int/FP/SIMD
26,000 6,000

Exceptions 4,000 3,000
Memory 3,000 1,000
Debug 3,000 1,000
Misc 5,500 2,000

(Test support) 1,500 2,000
Total 43,000 15,000

ARM Spec (lines of code)
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Test	Suite

Testing Specifications
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v8-A/M	Specifica3on

ASL	Interpreter/Compiler

Test	Program
Specifica3on	Bug

Test	Bug

Test	SuiteTest	SuiteTest	SuiteTest	Suite

Trustworthy	Specifica3ons	of	ARM	v8-A	and	v8-M	System	Level	Architecture,	FMCAD	2016

11,000	test	programs	
2	Billion	instruc3ons
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Formally Validating Processors
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v8-A/M	Spec	
(ASL)

Model	Checker

Processor	Bug

	Specifica3on	Bug

ARM	
Processor

ASL	to	
Verilog

v8-A/M	Spec	
(Verilog)

CEX

CEX

End	to	End	Verifica3on	of	ARM	Processors	with	ISA-Formal,	CAV	2016
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Finding Bugs in Specs
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Formally Validating Specifications
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v8-M	Spec

Verifica3on Bug	in	Spec
CEX

Property
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Derived	Excep3on
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Lockup
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rule lockup entry
assume Rose(LockedUp);
assume ¬Called(TakeReset); 

property a    HaveMainExt() ⇒ CFSR != 0;
property b1  Stable(ExnPending);
property b2  Stable(ExnActive);
property c    RName[RNamesPC] = 0xEFFFFFFE;
property e    Stable(HFSR.FORCED); 
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rule lockup_exit
assume Fell(LockedUp);

Called(TakeColdReset)
∨ Called(TakeReset)
∨ Rose(Halted)
∨ Called(ExceptionEntry); 
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rule lockup
assume LockedUp;

invariant a DHCSR.S_LOCKUP = 1; 
invariant b PC == 0xEFFFFFFE;
property  c 

assume Past(LockedUp); 
¬ Called(FetchInstr) ∧ ¬Called(DecodeExecute); 
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State

OutputInput

State
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State

OutputInput
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Formally Validating Specifications
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v8-M	Spec

Verifica3on Bug	in	Spec
CEX

Property

12	Bugs	
Found	
so	far
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Formally Validating Specifications
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v8-M	Spec	
(ASL)

Bug	in	Spec

ASL	to	SMT

CEXRule	
+	Invariants Verifica3on
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Formally Validating Specifications
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v8-M	Spec	
(ASL)
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Formally Validating Specifications
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v8-M	Spec	
(ASL)
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Bug	in	Rule
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Specifications are part of your TCB
Testing and Formal Validation of Processor Specifications

Testing Specifications (FMCAD 2016)
Formally Validating Processors (CAV 2016)

Formally Validating Specifications (submitted)

Generating Testcases
Security Checking
Booting an OS
Fuzzing an OS

The Virtuous Cycle
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Testcase Generation

35

v8-A/M	Specifica3on
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Security Checking
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v8-M	Specifica3on

ASL	Interpreter

Test	Program
Informa3on	

Flow

Symbolic	
Dataflow	
Graph
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Booting an OS
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v8-M	Specifica3on

ASL	Interpreter/Compiler

mbed	OS

Applica3on

(Work	by	Jon	French	and	Nathan	Chong)
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Fuzzing the mbed OS
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v8-M	Specifica3on

ASL	Interpreter/Compiler

mbed	OS

Random	Applica3on
Crash/Fail

Branch	
Coverage

TestCase

AFL	Fuzzer

(Work	by	Jon	French	and	Nathan	Chong)
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Creating a Virtuous Cycle
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How can you trust formally verified software?

Don’t forget the TCB

Specifications — The Next Formal Verification Bottleneck

Too large to be “obviously correct”

Testing

Formally validating implementations

Formally validating specifications
  

Hiring in Security and Correctness group — contact me
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