How Can You Trust
Formally Verified
Software?

Alastair Reid

Arm Research
@alastair_d_reid

Formal verification

Of libraries and apps

Verified

Software
Toolchain

2 © 2017 Arm Limited

Of compilers

COMPCERT

e r—m—
I Vellvm]

verified

LLVM

A Verified Implementation of ML

Of operating systems

, Security. Performance. Proof.

CERTIKOS

arm

Fonseca et al., An Empirical Study on the Correctness of Formally Verified Distributed Systems, Eurosys ‘17

4)

Formally
Verified

Software
Y,

3 © 2017 Arm Limited q rm

3

Fonseca et al., An Empirical Study on the Correctness of Formally Verified Distributed Systems, Eurosys ‘17

2017 Arm Limited

4)

Formally
Verified
Software
a N\ N\)
Verification Shim Formal
Tool Code Specifications
_ I\ VAN _J

arm

Takeaway #1: 3 key questions to ask

1. What specifications does your proof rely on?

2. Why do you trust those specifications?

3. Does anybody else use these specifications?

4 © 2017 Arm Limited q rm

Takeaway #2: Specifications must have multiple uses

arm

5 © 2017 Arm Limited

Takeaway #2: Specifications must have multiple uses

6 © 2017 Arm Limited q r m

How can you trust formally verified software?

How can you trust formally verified software?

How can you trust formal specifications?
Testing specifications
Verifying processors
Verifying specifications

How can you trust formally verified software?

7 © 2017 Arm Limited q rm

+ 4 + + + + + +

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016

+ + + + + + + +

+ + + + + + + +

Creating trustworthy

specifications

© 2017 Arm Limited
+ + 4 4 + i 4 4

arm

Arm Architecture Reference Manual (ARMARM)

32-bit / 64-bit Instructions

g o400 T/' Exceptions / Interrupts
| % 4800 Privilege / Security
‘§ ARCHITECTURE Virtual Memory

. REFERENCE 3200 1 System registers
i MANUAL Y 5
™S, Secont i 1600 Debug / Trace
¥ ... 0 , . Profiling
: b i 1996 2007 2018

9 © 2017 Arm Limited q r m

English prose

Ryric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.

. Entry to Debug state.

. Preemption by a higher priority exception.
RyvoNw Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.
. No update to the exception state, pending or active.
. The PC to be set to OxEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.
10 © 2017 Arm Limited q rm

Pseudocode

Encoding A1 ARMv4* ARMvST*, ARMv6e*, ARMv7
ADC{S}<C> <Rd>,<Rn>,<Rm>{,<shift>}

3130202827 262524232221 2019181716 151413 121110 9 8 7 6 5 4 3 2 1 0O
cond O 0jOj0 1 0 1S Rn Rd imm3 type | 0 Rm

if Rd == *1111" && S = ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) - DecodeImmShift(type, imm5);

if ConditionPassed() then
EncodingSpecificOperations();
shifted - Shift(R[m], shift_t, shift_n, APSR.(C);
(result, carry, overflow) - AddwithCarry(R[n], shifted, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
glse
R[d] = result;
if setflags then
APSR.N = result<3ls;
APSR.Z = IsZeroBit(result);
APSR.C - carry;
APSR.V = overflow;

11 © 2017 Arm Limited q rm

Arm Architecture Specification Language (ASL)

Indentation-based syntax
Imperative
First-order
Strongly typed (type inference, polymorphism, dependent types)
Bit-vectors
Unbounded integers
Infinite precision reals
Arrays, Records, Enumerations

Exceptions

12 © 2017 Arm Limited q rm

[ASL Spec

-

)
b,

13 © 2017 Arm Limited

-

Lexer
Parser

~

Typechecker

~

_

_

C
Backend

Interpreter

A

-

arm

Architectural Conformance Suite

Processor architectural compliance sign-off

Large
e v8-A 11,000 test programs, > 2 billion instructions

e v8-M 3,500 test programs, > 250 million instructions

Thorough

e Tests dark corners of specification

14 2017 Arm Limited q rm

15

100

75

50

25

© 2017 Arm Limited

Testing Pass Rate

— ISA

15

(Artists Impression)

— Supervisor

Hypervisor/Security

Time

arm

v8-M

100%

75%

50%

25%

A

0%

16 © 2017 Arm Limited q r m

16

Measuring architecture coverage of tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf

bits(N) FPRSqrtStepFused(bits(N) opl, bits(N) op2)
assert N IN {32, 64}:
bits(N) result;
opl = FPNeg(opl); // per FMSUB/FMLS
(tvpel.signl valuel) = FPUnpack(opl, FPCR);
(tvpe2.sign2 value2) = FPUnpack(op2, FPCR);
(done result) = FPProcessNaNs(typel, tvpe2. opl, op2, FPCR);
if !done then
infl = (typel == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zerol = (tvpel == FPType_Zero);
zero2 = (tvpe2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
result = FPOnePointFive('0");
elsif infl || inf2 then
result = FPInfinity(signl EOR sign2, N);
else
// Fully fused multiply-add and halve
result_value = (3.0 + (valuel * value2)) / 2.0;
if result_value == 0.0 then
// Sign of exact zero result depends on rounding mode
sign = if FPCRRounding() == FPRounding NEGINF then 'l' else '0';
result = FPZero(sign, N);
else
result = FPRound(result_value, FPCRRounding()):
return result;

17 © 2017 Arm Limited q rm

Ilrlr

18 © 2017 Arm Limited a r m

4 4 + + 4 4 + +

“End to End Verification of ARM processors with ISA Formal,” CAV 2016

+ + + + + + + +

+ + + + + + + +

Formal verification

of processors |

© 2017 Arm Limited
+ 4 i i + 4 i i

arm

eeeeee

Checking an instruction

ADD

The Architecture for the Digital VWorld® ARM

eeeeee

Checking an instruction

CMPLDR ADD [STRBNE |

N

Context

The Architecture for the Digital VWorld® ARM

IF

ID

21 © 2017 Arm Limited

_>

RO

R15

MEM

Memory

RO

R15

WB

arm

IF

ID EX MEM /
}5 :\ |
* IR Vol
Memory
D

arm

RO
R15

MEM wB
/

Al
%

EX

Memory

}>
)

RO
R15

ID

IF

.—’ — Decode

arm

4 N

Arch.itectl.,lre ASL. to Combil?ational
Specification Verilog Verilog
_ J
Specialize

Monomorphize
Constant Propagation
Width Analysis
Exception Handling

ARMResearch 2 The Architecture for the Digital VWorld® ARM

Arm CPUs verified with ISA-Formal

f A-class R-class M-class \

Cortex-A53 Cortex-R52 Cortex-M4
Cortex-A32 Next generation Cortex-M7
Cortex-A35 Cortex-M33
Cortex-A55 Next generation

k Next generation Cambridge Projects/

Rolling out globally to other design centres

Sophia, France - Cortex-A75 (partial)
Austin, USA - TBA

Chandler, USA - TBA
23 © 2017 Arm Limited q rm

24 © 2017 Arm Limited a r m

+ 4 + + + + + +

“Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

+ + + + + + + +

+ + + + + + + +

Formal validation

of specifications |

© 2017 Arm Limited
+ + 4 4 + i 4 4

arm

Suppose...

Last year: audited all accesses to privileged registers
e Specification: Added missing privilege checks
e Testsuite: Added new tests to test every privilege check

e Formal testbench: Verify every check

This year: add new instruction but accidentally omit privilege check

How many tests in the test suite will fail on new specification?

26 © 2017 Arm Limited q rm

Can we formally verify specification?

Specification of the specification

Disallowed behaviour
Invariants

Cross-cutting properties

Tools that can prove properties of ASL specifications

27 © 2017 Arm Limited q rm

Exit from lockup is by any of the following:
. A Cold reset.

. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.

28 © 2017 Arm Limited q rm

State change >(Exit from lockup)is by any of the following:
. A Cold reset.
. A Warm reset.

. Entry to Debug state.
. Preemption by a higher priority exception.

28 © 2017 Arm Limited q rm

State change >(Exit from lockup)is by any of the following:
. A Cold reset.

Event -—»(A Warm reset.)
. Entry to Debug state.

. Preemption by a higher priority exception.

28 © 2017 Arm Limited q rm

Riric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.

29 © 2017 Arm Limited q rm

Ryric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.

Input Output

State State

29 © 2017 Arm Limited

arm

Ryric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.

Input (¢ L) Output

State (J

29 © 2017 Arm Limited

arm

Riric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.

Input (¢ L) Output
State O

29 © 2017 Arm Limited

arm

Exit from lockup is by any of the following;: rule lockup_exit
. A Cold reset.

assume Fell(LockedUp);
. A Warm reset.

Called(TakeColdReset)
. Entry to Debug state.

. Preemption by a higher priority exception. v Called(TakeReset)
v Rose(InDebugState())

v Called(ExceptionEntry);

30 © 2017 Arm Limited q rm

Converting ASL to SMT

Functions

Local Variables

Statements
Assignments
If-statements

Exceptions

Arithmetic operations

Boolean operations

Bit Vectors

Arrays

31 © 2017 Arm Limited

Arithmetic operations
Boolean operations
Bit Vectors

Arrays

arm

Formally Validating Specifications

v8-M Spec

Property

Verification

32 © 2017 Arm Limited

Bug in Spec

Proof

arm

Formally Validating Specifications

v8-M Spec

Property

Verification

32 © 2017 Arm Limited

12 Bugs
Found
so far

Proof

arm

Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

. No update to the exception state, pending or active.
. The PC to be set to OXEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.

33 © 2017 Arm Limited q rm

Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

. No update to the exception state, pending or active.
. The PC to be set to OXEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.

rule lockup entry
assume Rose(LockedUp);
assume -Called(TakeReset);

property a HaveMainExt() = CFSR != 0;

property bl Stable(ExnPending);
property b2 Stable(ExnActive);
property c PC == OXEFFFFFFE;

property e HFSR.FORCED == 0,
33 © 2017 Arm Limited ’ q rm

Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

. No update to the exception state, pending or active.
. The PC to be set to OXEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.

rule lockup entry
assume Rose(LockedUp);
assume -Called(TakeReset);

property a HaveMainExt() = CFSR != 0;
poonecty bl StablelExobending),
Roopacty b2 StablatExnlciing)\
property ¢ ((PC)== OXEFFFFFFE;
property e msbliablalORiohbmnmms
(Stable(HFSR.FORCED);)

33 © 2017 Arm Limited

arm

Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

o WEW
. The PC to be set to OXEFFFFFFE.

. EPSR.IT to be become UNKNOWN.
In additioni HFSR.FORCED ieitetetotstomlm= 5 not changed.

rule lockup entry
assume Rose(LockedUp);
assume -Called(TakeReset);

property a HaveMainExt() = CFSR != 9;

Debug view of Loopacty bl StablelExabanding)

Roopacty b2 StablatExnlciing)\
property ¢ ((PC)== OXEFFFFFFE;
property e msbliablalORiohbmnmms
(Stable(HFSR.FORCED);)

33 © 2017 Arm Limited

arm

34 © 2017 Arm Limited a r m

4)
[ARM Test

Test Suite Backend Coverage
><:K /
4)
s Simulation
Interpreter T
W Lexer _ race)
ASL Spec J

\ 4

Parser

Typechecker
\ J Verilog
Backend
Bounded
Model Checker
Processor
Architecture (

[Properties]] SMT >MT
P Backendj 'L Solver

35 © 2017 Arm Limited q rm

Public release of machine readable Arm specification

Enable formal verification of software and tools
Releases
April 2017: v8.2
July 2017:v8.3
Working with Cambridge University REMS group to convert to SAIL
Backends for HOL, OCaml, Memory model, (hopefully Coq too)
Tools: https://github.com/alastairreid/mra_tools

Talk to me about how | can help you use it

36 © 2017 Arm Limited q rm

https://github.com/alastairreid/mra_tools

Potential uses of processor specifications

Verifying compilers

Verifying OS page table / interrupt / boot code
Verifying processor pipelines

Verification and discovery of peephole optimizations
Automatic generation of binary translators
Automatic generation of test cases

Decompilation of binaries

Abstract interpretation of binaries

etc.

37 © 2017 Arm Limited q rm

How can you trust formally verlfled
~ software?

© 2017 Arm Limited

arm

How can you trust formal specifications?

Test the specifications you depend on
Ensure specifications have multiple uses

Create meta-specifications

SCROLL
T 200M

https://xkcd.com/1416/

39 © 2017 Arm Limited q r m

Thank You! @alastair_d_reid

Danke!
arm

Mercil
159 157 |
HYHES!

G ra C|a S | “Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016
. “End to End Verification of ARM processors with ISA Formal,” CAV 2016
K| |tOS I “Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

© 2017 Arm Limited

