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Fonseca et al., An Empirical Study on the Correctness of Formally Verified Distributed Systems, Eurosys ‘17
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Fonseca et al., An Empirical Study on the Correctness of Formally Verified Distributed Systems, Eurosys ‘17
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Takeaway #1: 3 key questions to ask

1. What specifications does your proof rely on?

2. Why do you trust those specifications?

3. Does anybody else use these specifications?
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Takeaway #2: Specifications must have multiple uses
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Takeaway #2: Specifications must have multiple uses
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How can you trust formally verified software?

How can you trust formally verified software?

How can you trust formal specifications?
Testing specifications
Verifying processors
Verifying specifications

How can you trust formally verified software?
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“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016
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Arm Architecture Reference Manual (ARMARM)

32-bit / 64-bit Instructions

g o400 T/' Exceptions / Interrupts
| % 4800 Privilege / Security
‘§  ARCHITECTURE Virtual Memory

. REFERENCE 3200 1 System registers
i MANUAL Y 5
™S, Secont i 1600 Debug / Trace
¥ ... 0 , . Profiling
: b i 1996 2007 2018
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English prose

Ryric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.

. Entry to Debug state.

. Preemption by a higher priority exception.
RyvoNw Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.
. No update to the exception state, pending or active.
. The PC to be set to OxEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.
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Pseudocode

Encoding A1 ARMv4* ARMvST*, ARMv6e*, ARMv7
ADC{S}<C> <Rd>,<Rn>,<Rm>{,<shift>}

3130202827 262524232221 2019181716 151413 121110 9 8 7 6 5 4 3 2 1 0O
cond O 0jOj0 1 0 1S Rn Rd imm3 type | 0 Rm

if Rd == *1111" && S = ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) - DecodeImmShift(type, imm5);

if ConditionPassed() then
EncodingSpecificOperations();
shifted - Shift(R[m], shift_t, shift_n, APSR.(C);
(result, carry, overflow) - AddwithCarry(R[n], shifted, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
glse
R[d] = result;
if setflags then
APSR.N = result<3ls;
APSR.Z = IsZeroBit(result);
APSR.C - carry;
APSR.V = overflow;
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Arm Architecture Specification Language (ASL)

Indentation-based syntax
Imperative
First-order
Strongly typed (type inference, polymorphism, dependent types)
Bit-vectors
Unbounded integers
Infinite precision reals
Arrays, Records, Enumerations

Exceptions
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Architectural Conformance Suite

Processor architectural compliance sign-off

Large
e v8-A 11,000 test programs, > 2 billion instructions

e v8-M 3,500 test programs, > 250 million instructions

Thorough

e Tests dark corners of specification
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Measuring architecture coverage of tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf

bits(N) FPRSqrtStepFused(bits(N) opl, bits(N) op2)
assert N IN {32, 64}:
bits(N) result;
opl = FPNeg(opl); // per FMSUB/FMLS
(tvpel.signl valuel) = FPUnpack(opl, FPCR);
(tvpe2.sign2 value2) = FPUnpack(op2, FPCR);
(done result) = FPProcessNaNs(typel, tvpe2. opl, op2, FPCR);
if !done then
infl = (typel == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zerol = (tvpel == FPType_Zero);
zero2 = (tvpe2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
result = FPOnePointFive('0");
elsif infl || inf2 then
result = FPInfinity(signl EOR sign2, N);
else
// Fully fused multiply-add and halve
result_value = (3.0 + (valuel * value2)) / 2.0;
if result_value == 0.0 then
// Sign of exact zero result depends on rounding mode
sign = if FPCRRounding() == FPRounding NEGINF then 'l' else '0';
result = FPZero(sign, N);
else
result = FPRound(result_value, FPCRRounding()):
return result;
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“End to End Verification of ARM processors with ISA Formal,” CAV 2016
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Checking an instruction
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The Architecture for the Digital VWorld® ARM
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Arm CPUs verified with ISA-Formal

f A-class R-class M-class \

Cortex-A53 Cortex-R52 Cortex-M4
Cortex-A32 Next generation Cortex-M7
Cortex-A35 Cortex-M33
Cortex-A55 Next generation

k Next generation Cambridge Projects/

Rolling out globally to other design centres

Sophia, France - Cortex-A75 (partial)
Austin, USA - TBA

Chandler, USA - TBA
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“Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017
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Suppose...

Last year: audited all accesses to privileged registers
e Specification: Added missing privilege checks
e Testsuite: Added new tests to test every privilege check

e Formal testbench: Verify every check

This year: add new instruction but accidentally omit privilege check

How many tests in the test suite will fail on new specification?
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Can we formally verify specification?

Specification of the specification

Disallowed behaviour
Invariants

Cross-cutting properties

Tools that can prove properties of ASL specifications
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Exit from lockup is by any of the following:
. A Cold reset.

. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.
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State change >(Exit from lockup)is by any of the following:
. A Cold reset.
. A Warm reset.

. Entry to Debug state.
. Preemption by a higher priority exception.
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State change >(Exit from lockup)is by any of the following:
. A Cold reset.

Event -—»( A Warm reset. )
. Entry to Debug state.

. Preemption by a higher priority exception.
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Riric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.
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Ryric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.

Input Output

State State
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Ryric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.

Input (¢ L) Output

State (J
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Riric Exit from lockup is by any of the following:
. A Cold reset.
. A Warm reset.
. Entry to Debug state.

. Preemption by a higher priority exception.

Input (¢ L) Output
State O
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Exit from lockup is by any of the following;: rule lockup_exit
. A Cold reset.

assume Fell(LockedUp);
. A Warm reset.

Called(TakeColdReset)
. Entry to Debug state.

. Preemption by a higher priority exception. v Called(TakeReset)
v Rose(InDebugState())

v Called(ExceptionEntry);
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Converting ASL to SMT

Functions

Local Variables

Statements
Assignments
If-statements

Exceptions

Arithmetic operations

Boolean operations

Bit Vectors

Arrays
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Formally Validating Specifications

v8-M Spec

Property

Verification
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Bug in Spec

Proof
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Formally Validating Specifications

v8-M Spec

Property

Verification
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Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

. No update to the exception state, pending or active.
. The PC to be set to OXEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.
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Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

. No update to the exception state, pending or active.
. The PC to be set to OXEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.

rule lockup entry
assume Rose(LockedUp);
assume -Called(TakeReset);

property a HaveMainExt() = CFSR != 0;

property bl  Stable(ExnPending);
property b2  Stable(ExnActive);
property c PC == OXEFFFFFFE;

property e HFSR.FORCED == 0,
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Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

. No update to the exception state, pending or active.
. The PC to be set to OXEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.

rule lockup entry
assume Rose(LockedUp);
assume -Called(TakeReset);

property a HaveMainExt() = CFSR != 0;
poonecty bl StablelExobending),
Roopacty b2  StablatExnlciing )\
property ¢ ((PC)== OXEFFFFFFE;
property e  msbliablalORiohbmnmms
(Stable(HFSR.FORCED);)

33 © 2017 Arm Limited

arm



Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.

o WEW
. The PC to be set to OXEFFFFFFE.

. EPSR.IT to be become UNKNOWN.
In additioni HFSR.FORCED ieitetetotstomlm= 5 not changed.

rule lockup entry
assume Rose(LockedUp);
assume -Called(TakeReset);

property a HaveMainExt() = CFSR != 9;

Debug view of Loopacty bl StablelExabanding)

Roopacty b2  StablatExnlciing )\
property ¢ ((PC)== OXEFFFFFFE;
property e  msbliablalORiohbmnmms
(Stable(HFSR.FORCED);)
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Public release of machine readable Arm specification

Enable formal verification of software and tools
Releases
April 2017: v8.2
July 2017:v8.3
Working with Cambridge University REMS group to convert to SAIL
Backends for HOL, OCaml, Memory model, (hopefully Coq too)
Tools: https://github.com/alastairreid/mra_tools

Talk to me about how | can help you use it
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https://github.com/alastairreid/mra_tools

Potential uses of processor specifications

Verifying compilers

Verifying OS page table / interrupt / boot code
Verifying processor pipelines

Verification and discovery of peephole optimizations
Automatic generation of binary translators
Automatic generation of test cases

Decompilation of binaries

Abstract interpretation of binaries

etc.
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How can you trust formally verlfled
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How can you trust formal specifications?

Test the specifications you depend on
Ensure specifications have multiple uses

Create meta-specifications

SCROLL
T 200M

https://xkcd.com/1416/
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