
©	2017	Arm	Limited	

Specifications:	The	Next	
Verification	Bottleneck

Alastair	Reid

Arm	Research

@alastair_d_reid

©	2017	Arm	Limited	2

Overview

1. What	specifications	do	we	need?	

2. ARM’s	formal	processor	specifications	

3. Three	steps	I	took	to	create	good	specifications

©	2017	Arm	Limited	3

ARM

Designs	processors,	designs	architecture,	licenses	architecture	

16B	processors	/	year	

(also	GPUs,	IoT,	…)	

Security	Research	Group	

-	Develop	and	analyse	security	extensions	

-	Create	framework	for	verifying	products	

-	We	are	hiring:	full	time,	research	internships

©	2017	Arm	Limited	4

Applications

Libraries

Runtimes

Secure	Services C	Compiler	/	Linker

MicroKernel

HAL

Architecture

MicroArchitecture

RTLD

©	2017	Arm	Limited	5

Specifications	we	need

Linux	sys	calls	
C	stdlib	

ISO	C	
Gcc/LLVM	extensions	
Inline	assembly	
ELF	/	linkerscript	
Weak	memory	model

Processor	page	tables	
Interrupt	handler	
Device	driver	API	
Filesystem	format

TCP/IP,	UDP,	…	
TSL	
NTP,	DNS,	NFS,	…	
WiFi,	Bluetooth,	Zigbee,	…	
USB,	SD	card,	…

X11/Gtk+/…	
Javascript,	CSS,	SVG,	…	
PHP,	…

©	2017	Arm	Limited	6

Trusted	Computing	Base				(!=		Trustworthy	Computing	Base)

a small amount of software and hardware that security depends on and
that we distinguish from a much larger amount that can misbehave
without affecting security

— Lampson

the totality of protection mechanisms within it, including hardware,
firmware, and software, the combination of which is responsible for
enforcing a computer security policy

— Orange Book (US DoD)

©	2017	Arm	Limited	7

Specifications	for	real	world	software/hardware

Unavoidable	

Multiple	implementations	

Multiple	versions	of	each	implementation	

Spec	must	include	all	quirks	of	recent	versions	of	major	implementations	to	be	useful	

Existing	specification	=	English	+	Tables	+	Pseudocode	

Existing	community	may	not	value	formal	spec	at	first

©	2017	Arm	Limited	

Creating	trustworthy	
specifications

“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016

©	2017	Arm	Limited	9

The	state	of	most	processor	specifications

Large	(1000s	of	pages)	

Broad	(10+	years	of	implementations,	multiple	manufacturers)	

Complex	(exceptions,	weak	memory,	…)	

Informal	(mostly	English	prose)	

We	are	all	just	learning	how	to	(retrospectively)	formalize	specifications

©	2017	Arm	Limited	10

Arm	Processor	Specifications

A-class	(phones,	tablets,	servers,	…) M-class	(microcontrollers,	IoT)

6,000	pages	
40,000	line	formal	specification		

Instructions	(32/64-bit)	
Exceptions	/	Interrupts	
Memory	protection	
Page	tables	
Multiple	privilege	levels	
System	control	registers	
Debug	/	trace

1,200	pages	
15,000	line	formal	specification		

Instructions	(32-bit)	
Exceptions	/	Interrupts	
Memory	protection	
Page	tables	
Multiple	privilege	levels	
System	control	registers	
Debug	/	trace

©	2017	Arm	Limited	11

English	prose

©	2017	Arm	Limited	12

Pseudocode

ARMResearch

System Architecture Specification

13

©	2017	Arm	Limited	14

Arm	Architecture	Specification	Language	(ASL)

Indentation-based	syntax	

Imperative	

First-order	

Strongly	typed	(type	inference,	polymorphism,	dependent	types)	

Bit-vectors	

Unbounded	integers	

Infinite	precision	reals	

Arrays,	Records,	Enumerations	

Exceptions

ARMResearch 15

v8-A v8-M
Instructions

Int/FP/SIMD
26,000 6,000

Exceptions 4,000 3,000
Memory 3,000 1,000
Debug 3,000 1,000
Misc 5,500 2,000

(Test support) 1,500 2,000
Total 43,000 15,000

ARM Spec (lines of code)

ARMResearch

System Register Spec

16

v8-A v8-M

Registers 586 186
Fields 3951 622
 Constant
 aoe

985 177
 Reserved 940 208
 Impl. Defined 70 10
 Passive 1888 165
 Active 68 62
Operations 112 10

ARMResearch

Trustworthiness

17

ARMResearch

Trustworthiness

ARM’s specification is correct by definition

17

ARMResearch

Trustworthiness

ARM’s specification is correct by definition

17

ARMResearch

Trustworthiness

Does the specification match the behaviour
of all ARM processors?

18

©	2017	Arm	Limited	19

Interpreter

C	
Backend

ASL	Spec
Lexer	
Parser	

Typechecker

©	2017	Arm	Limited	20

Architectural	Conformance	Suite

Processor	architectural	compliance	sign-off	

Large	

• v8-A	11,000	test	programs,	>	2	billion	instructions	

• v8-M	3,500	test	programs,	>	250	million	instructions	

Thorough	

• Tests	dark	corners	of	specification

©	2017	Arm	Limited	21 ©	2017	Arm	Limited	

Progress	in	testing	Arm	specification

- Does	not	parse,	does	not	typecheck

- Can’t	get	out	of	reset

- Can’t	execute	first	instruction

- Can’t	execute	first	100	instructions

- …

- Passes	90%	of	tests

- Passes	99%	of	tests

- …

0

50

100

©	2017	Arm	Limited	22

Measuring	architecture	coverage	of	tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf

ARMResearch

Creating a Virtuous Cycle

23

ARM	
Spec

Fuzzing	
Firmware

ARM	
Conformance	
TestSuite

Processor	
Verificanon

Boot	
OS

Informanon	
Flow	

Analysis

Random	
Instrucnon	
Sequences

Testcase	
Generanon

Specificanon	
Verificanon

©	2017	Arm	Limited	

Formal	validation	
of	processors

“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

ARMResearch

Checking	an	instrucnon

25

ADD

ARMResearch

Checking	an	instrucnon

25

ADDCMP LDR STR BNE

Context

©	2017	Arm	Limited	26

Memory

R0

-

R15
DecodeFetch

EX MEM WBIF ID

R0

-

R15

©	2017	Arm	Limited	26

Memory

R0

-

R15
DecodeFetch

EX MEM WBIF ID

R0

-

R15

πpre

πpost

©	2017	Arm	Limited	26

Memory

R0

-

R15
DecodeFetch

EX MEM WBIF ID

R0

-

R15

πpre

πpost

Pre Post_spec

Post_cpu

Spec ==?

ARMResearch

Errors ISA-Formal can catch

• Errors in decode

• Errors in data path

• Errors in forwarding logic

• Errors in register renaming

• Errors in exception handling

• Errors in speculative execution

27

No	Context

Context

{
{

ARMResearch

Specifying ADD

assign ADD_retiring = (pre.opcode & 16'b1111_1110_0000_0000)

 == 16'b0001_1000_0000_0000;

assign ADD_result = pre.R[pre.opcode[8:6]] + pre.R[pre.opcode[5:3]];

assign ADD_Rd = pre.opcode[2:0];

assert property (@(posedge clk) disable iff (~reset_n)

 ADD_retiring |-> (ADD_result == post.R[ADD_Rd]));

28

ARMResearch

ISA Formal

• Finds complex bugs in processor pipelines

• Applied to wide range of μArchitectures

• Uses translation of ARM’s internal ISA specification

29

ARMResearch 30

ARMResearch 30

ARMResearch

Challenges

• Complex Functional Units
• FP
• Memory

• Dual Issue
• Instruction Fusion
• Register Renaming
• Out-of-order Retire

31

ARMResearch 32

Memory

R0

-

R15
DecodeFetch

EX MEM WBIF ID

R0

-

R15

ARMResearch 33

ARMResearch 33

Memory
TLB

Prefetch

PTW

Coherence

Cache

ARMResearch 33

Memory
TLB

Prefetch

PTW

Coherence

Cache

FPU
FMUL

FADD FDIV

FSQRT

ARMResearch 34

Memory

R0

-

R15
DecodeFetch

R0

-

R15

Memory

FPU

ARMResearch

FP Subset Behaviour

35

-∞ -1 0 1 ∞
-∞ -∞ -∞ -∞ -∞

-1 -∞ -1 0 ∞
0 -∞ -1 0 1 ∞
1 -∞ 0 1 ∞
∞ ∞ ∞ ∞ ∞

FPAdd

ARMResearch

ISA Formal

• Finds complex bugs in processor pipelines

• Applied to wide range of μArchitectures

• Uses translation of ARM’s internal ISA specification

36

ARMResearch

ISA-Formal Properties

37

ADC ADD B … YIELD
R[] ✔

NZCV
SP
PC

S[],D[],V[]
FPSR

MemRead
MemWrite
SysRegRW

ELR
ESR
…

ARMResearch

ISA-Formal Properties

38

ADC ADD B … YIELD
R[] ✔

NZCV
SP ✔

PC
S[],D[],V[]

FPSR
MemRead
MemWrite
SysRegRW

ELR
ESR
…

ARMResearch

ISA-Formal Properties

39

ADC ADD B … YIELD
R[] ✔ ✔

NZCV
SP ✔

PC ✔

S[],D[],V[]
FPSR

MemRead
MemWrite
SysRegRW

ELR
ESR
…

ARMResearch

ISA-Formal Properties

40

ADC ADD B … YIELD
R[] ✔ ✔ ✔

NZCV ✔

SP ✔ ✔

PC ✔

S[],D[],V[]
FPSR

MemRead
MemWrite
SysRegRW

ELR
ESR
…

ARMResearch

But this is slow
and inconsistent

41

ARMResearch

ISA-Formal Properties

42

ADC ADD B … YIELD
R[] ✔ ✔ ✔ ✔ ✔

NZCV
SP
PC

S[],D[],V[]
FPSR

MemRead
MemWrite
SysRegRW

ELR
ESR
…

ARMResearch

ISA-Formal Properties

43

ADC ADD B … YIELD
R[] ✔ ✔ ✔ ✔ ✔

NZCV ✔ ✔ ✔ ✔ ✔

SP ✔ ✔ ✔ ✔ ✔

PC ✔ ✔ ✔ ✔ ✔

S[],D[],V[]
FPSR

MemRead
MemWrite
SysRegRW

ELR
ESR
…

ARMResearch

ISA-Formal Properties

44

ADC ADD B … YIELD
R[] ✔ ✔ ✔ ✔ ✔

NZCV ✔ ✔ ✔ ✔ ✔

SP ✔ ✔ ✔ ✔ ✔

PC ✔ ✔ ✔ ✔ ✔

S[],D[],V[] ✔ ✔ ✔ ✔ ✔

FPSR ✔ ✔ ✔ ✔ ✔

MemRead
MemWrite
SysRegRW

ELR
ESR
…

ARMResearch

ISA-Formal Properties

45

ADC ADD B … YIELD
R[] ✔ ✔ ✔ ✔ ✔

NZCV ✔ ✔ ✔ ✔ ✔

SP ✔ ✔ ✔ ✔ ✔

PC ✔ ✔ ✔ ✔ ✔

S[],D[],V[] ✔ ✔ ✔ ✔ ✔

FPSR ✔ ✔ ✔ ✔ ✔

MemRead ✔ ✔ ✔ ✔ ✔

MemWrite ✔ ✔ ✔ ✔ ✔

SysRegRW
ELR
ESR
…

ARMResearch

ISA-Formal Properties

46

ADC ADD B … YIELD
R[] ✔ ✔ ✔ ✔ ✔

NZCV ✔ ✔ ✔ ✔ ✔

SP ✔ ✔ ✔ ✔ ✔

PC ✔ ✔ ✔ ✔ ✔

S[],D[],V[] ✔ ✔ ✔ ✔ ✔

FPSR ✔ ✔ ✔ ✔ ✔

MemRead ✔ ✔ ✔ ✔ ✔

MemWrite ✔ ✔ ✔ ✔ ✔

SysRegRW ✔ ✔ ✔ ✔ ✔

ELR ✔ ✔ ✔ ✔ ✔

ESR ✔ ✔ ✔ ✔ ✔

…

ARMResearch 47

Combinational
Verilog

ASL to
Verilog

Architecture
Specification

Specialize	
Monomorphize	

Constant	Propagation	
Width	Analysis	

Exception	Handling	
…

ARMResearch 48

©	2017	Arm	Limited	49

Arm	CPUs	verified	with	ISA-Formal

A-class	

Cortex-A53	

Cortex-A32	

Cortex-A35	

Cortex-A55	

Next	generation

R-class	

Cortex-R52	

Next	generation

M-class	

Cortex-M4	

Cortex-M7	

Cortex-M33	

Next	generation

Cambridge	Projects

Rolling	out	globally	to	other	design	centres	

Sophia,	France	-	Cortex-A75	(partial)	

Austin,	USA	-	TBA	

Chandler,	USA	-	TBA

©	2017	Arm	Limited	

Formal	validation	
of	specifications

“Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications”	OOPSLA	2017

©	2017	Arm	Limited	51

One	Specification	to	rule	them	all?

Architecture	Spec

Compliance	Tests

Processors

Reference	Simulator

©	2017	Arm	Limited	52

Creating	a	redundant	specification

Where	to	get	a	list	of	redundant	properties	from?	

How	to	formalise	this	list?	

How	to	formally	validate	specification	against	properties?	

(This	may	look	familiar	from	formal	specification	of	software)

©	2017	Arm	Limited	53

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

©	2017	Arm	Limited	53

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									

©	2017	Arm	Limited	53

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									

And	cannot	happen	any	other	way

©	2017	Arm	Limited	53

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									

Rule	R:				X	→	A	∨	B	∨	C	∨	D

And	cannot	happen	any	other	way

©	2017	Arm	Limited	54

State	Change	X Exit from lockup Fell(LockedUp)

Event	A A Cold reset Called(TakeColdReset)

Event	B A Warm reset Called(TakeReset)

State	Change	C Entry to Debug state Rose(Halted)

Event	D Preemption by a higher
priority processor
exception

Called(ExceptionEntry)

©	2017	Arm	Limited	55

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

©	2017	Arm	Limited	56

Rule VGNW
Entry to lockup from an exception causes
• Any Fault Status Registers associated with the exception

to be updated.
• No update to the exception state, pending or active.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to become UNKNOWN.

In addition, HFSR.FORCED is not set to 1.

Out	of	date
Misleading

Ambiguous
Untestable

©	2017	Arm	Limited	57

Counterexample

v8-M Spec

Rules

ProofZ3	
SMT	
Solver

©	2017	Arm	Limited	58

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

Temporal	Operators Event	Operators

©	2017	Arm	Limited	59

Temporal	Operators

Fell(e)	

Past(e)	>	e

Stable(e)	

Past(e)	=	e

Rose(e)	

Past(e)	<	e

©	2017	Arm	Limited	60

Temporal	Operators

__Past_LockedUp = LockedUp;

FunctionUnderTest();

… __Past_LockedUp > LockedUp …

Fell(LockedUp)

©	2017	Arm	Limited	61

Event	Operators

TakeReset()
{
 __Called_TakeReset = TRUE;
 …
}

Called(TakeReset)

©	2017	Arm	Limited	62

__Called_TakeColdReset = FALSE;
__Called_TakeReset = FALSE;
__Called_TakeExceptionEntry = FALSE;
__Past_LockedUp = LockedUp;
__Past_Halted = Halted;

FunctionUnderTest();

assert((__Past_LockedUp > LockedUp)
 ==>
 (__Called_TakeColdReset
 || __Called_TakeReset
 || __Past_Halted < Halted
 || __Called_ExceptionEntry));

©	2017	Arm	Limited	63

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

Rule JRJC
Exit from lockup is by any of the following:

• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

__Called_TakeColdReset = FALSE;
__Called_TakeReset = FALSE;
__Called_TakeExceptionEntry = FALSE;
__Past_LockedUp = LockedUp;
__Past_Halted = Halted;

assert((__Past_LockedUp > LockedUp)
 ==>
 (__Called_TakeColdReset
 || __Called_TakeReset
 || __Past_Halted < Halted
 || __Called_ExceptionEntry));

©	2017	Arm	Limited	64

Arithmetic	operations	
Boolean	operations	
Bit	Vectors	
Arrays		
Functions	
Local	Variables	
Statements	

Assignments	
If-statements	
Loops	
Exceptions

Arm	Specification	
Language SMT

Arithmetic	operations	
Boolean	operations	
Bit	Vectors	
Arrays		
Functions	
Local	Variables	
Statements	

Assignments	
If-statements	
Loops	
Exceptions

©	2017	Arm	Limited	65

Results	(more	in	OOPSLA	paper)

Most	properties	proved	in	under	100	seconds	

Found	12	bugs	in	specification:	

-	debug,	exceptions,	system	registers,	security	

Found	bugs	in	English	prose:	

-	ambiguous,	imprecise,	incorrect,	…

©	2017	Arm	Limited	66

Lexer	
Parser	

Typechecker

Interpreter

Verilog	
Backend

C	
Backend

Test	
Coverage

Simulation	
Trace

ASL	Spec

SMT	
Backend

ARM	
Test	Suite

Architecture	
Properties

Bounded	
Model	Checker

SMT	
Solver

Arm	
Processor

©	2017	Arm	Limited	67

Public	release	of	machine	readable	Arm	specification

Enable	formal	verificanon	of	sotware	and	tools	

Releases	

April	2017:	v8.2	

July	2017:	v8.3	

Working	with	Cambridge	University	REMS	group	to	convert	to	SAIL	

Backends	for	HOL,	OCaml,	Memory	model,	(hopefully	Coq	too)	

Specificanon:	hvps://developer.arm.com/products/architecture/a-profile/exploranon-tools	

Tools:	hvps://github.com/alastairreid/mra_tools	

(See	also:	hvps://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat)	

Talk	to	me	about	how	I	can	help	you	use	it

https://developer.arm.com/products/architecture/a-profile/exploration-tools
https://github.com/alastairreid/mra_tools
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat

©	2017	Arm	Limited	68

Specifications:	The	next	bottleneck

Test	the	specifications	you	depend	on	

Formally	validate/verify	implementations	

Create	redundant	specifications	

Ensure	specifications	have	many	uses	

			Don’t	write	spec	in	Coq/HOL/ACL2/…	

			Try	to	influence	official	specification

Spec	

We	will	need	a	lot	of	specs	

			Of	real	world	s/w	+	h/w	

Specs	are	a	large	part	of	TCB	

How	are	we	going	to	create	them?	

How	are	we	going	to	trust	them?	

©	2017	Arm	Limited	69

Thanks

Alasdair Armstrong (Cambridge U.)
Alex Chadwick (ARM)
Ali Zaidi (ARM)
Anastasios Deligiannis (ARM)
Anthony Fox (Cambridge U.)
Ashan Pathirane (ARM)
Belaji Venu (ARM)
Bradley Smith (ARM)
Brian Foley (ARM)
Curtis Dunham (ARM)
David Gilday (ARM)
David Hoyes (ARM)
David Seal (ARM)
Daniel Bailey (ARM)
Erin Shepherd (ARM)
Francois Botman (ARM)

George Hawes (ARM)
Graeme Barnes (ARM)
Isobel Hooper (ARM)
Jack Andrews (ARM)
Jacob Eapen (ARM)
Jon French (Cambridge U.)
Kathy Gray (Cambridge U.)
Krassy Gochev (ARM)
Lewis Russell (ARM)
Matthew Leach (ARM)
Meenu Gupta (ARM)
Michele Riga (ARM)
Milosch Meriac (ARM)
Nigel Stephens (ARM)
Niyas Sait (ARM)
Peng Wang (ARM)

Peter Sewell (Cambridge U.)
Peter Vrabel (ARM)
Richard Grisenthwaite (ARM)
Rick Chen (ARM)
Simon Bellew (ARM)
Thomas Grocutt (ARM)
Will Deacon (ARM)
Will Keen (ARM)
Wojciech Meyer (ARM)
(and others)

Thank	You!	
Danke!	
Merci!	
谢谢!	
ありがとう!	
Gracias!	
Kiitos!

©	2017	Arm	Limited	70

@alastair_d_reid

“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016

“Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications,”	OOPSLA	2017

“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016

