
Hardware-Software Interfaces
Quality and Performance

Alastair Reid

Research

Arm Ltd

!1

Aspects of hw/sw interface
Quality of specification

Performance

Security

Scalability / Flexibility

Parallelism

Energy efficiency

Area efficiency

!2

…

!3

Architecture
Reference

Manual (.pdf)

Verification IP
(Verilog)

ISA Spec
(HOL)

ISA Spec
(Coq)

ISA Spec
(.smt2)

Compiler, JIT,
OS, …

Simulator
(.c)

Testsuite
(.s)

…

!3

Architecture
Reference

Manual (.pdf)

Verification IP
(Verilog)

ISA Spec
(HOL)

ISA Spec
(Coq)

ISA Spec
(.smt2)

Compiler, JIT,
OS, …

Simulator
(.c)

Testsuite
(.s)

Documentation
(.pdf)

Processor
Specification
(.asl, .xml)

⚙

⚙

⚙

⚙

⚙

⚙

⚙

⚙

!4

Processor
Specification

Challenges
Increased requirements

What specification language?

Loss of redundancy - all eggs in one basket

!5

Creating Specifications

!6

Creating Specifications

!6

Creating Specifications

!6

Creating Specifications

!6

Creating Specifications

!6

Creating Specifications

!6

Pseudocode

!7

Arm Pseudocode
~40,000 lines

- 32-bit and 64-bit modes

- All 4 encodings: Thumb16, Thumb32, ARM32, ARM64

- All instructions (> 1300 encodings)

- All 4 privilege levels (User, Supervisor, Hypervisor, Secure Monitor)

- Both Security modes (Secure / NonSecure)

- MMU, Exceptions, Interrupts, Privilege checks, Debug, TrustZone,
…

!8

Status at the start
- Vague,	incomplete,	inaccurate	language	description	
- No	tools	(parser,	type	checker)	
- Incomplete	(around	15%	missing)	
- Unexecuted,	untested	
- Senior	architects	believed	that	an	executable	spec	was	
- Impossible	
- Not	useful	
- Less	readable	
- Less	correct

!9

Architectural Conformance Suite
Processor architectural compliance sign-off

Large

• v8-A 32,000 test programs, billions of instructions

• v8-M 3,500 test programs, > 250 million instructions

Thorough

• Tests dark corners of specification

Hard to run

• Requires additional testing infrastructure

!10

©	2017	Arm	Limited	

Progress	in	testing	Arm	specification

- Does	not	parse,	does	not	typecheck

- Can’t	get	out	of	reset

- Can’t	execute	first	instruction

- Can’t	execute	first	100	instructions

- …

- Passes	90%	of	tests

- Passes	99%	of	tests

- …

0

50

100

Progress testing Arm specification

Does not parse, does not type check

Can’t get out of reset

Can’t execute first instruction

Can’t execute first 100 instructions

…

Passes 90% of tests

Passes 99% of tests

!11

Formally validating Arm processors

!12

Arm
Specification

Arm
Processor

Translate	
to	Verilog

Verilog	
Model	
Checker

!13

Arithmetic	operations	
Boolean	operations	
Bit	Vectors	
Unbounded	integers	
Arrays		
Dependent	Types	
Statements	
Assignments	
If-statements	
Loops	
Exceptions

Arm	Specification	
Language Verilog

Arithmetic	operations	
Boolean	operations	
Bit	Vectors	
Unbounded	integers	
Arrays		
Dependent	Types	
Statements	
Assignments	
If-statements	
Loops	
Exceptions

Checking	an	instrucKon

!14

ADD

Checking	an	instrucKon

!14

ADDCMP LDR STR BNE

Context

Lessons Learned from validating processors

Very effective way to find bugs in implementations

Applied to commercial processors

• Cortex-A32, Cortex-A35, Cortex-A53, Cortex-A55, Cortex-A65

• Cortex-R52

• Cortex-M4, Cortex-M7, Cortex-M33

Formally validating implementations is effective at finding bugs in spec

!15

Spec

!16

Processor
Specification

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

!17

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

!17

State Change X
Event A
Event B
State Change C
Event D

R

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

!17

State Change X
Event A
Event B
State Change C
Event D

R

Rule	R:				X	→	A	∨	B	∨	C	∨	D

!18

State	Change	X Exit from lockup Fell(LockedUp)

Event	A A Cold reset Called(TakeColdReset)

Event	B A Warm reset Called(TakeReset)

State	Change	C Entry to Debug state Rose(Halted)

Event	D Preemption by a higher
priority processor
exception

Called(ExceptionEntry)

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

!19

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

!20

Arithmetic	operations	
Boolean	operations	
Bit	Vectors	
Arrays		
Dependent	Types	
Functions	
Statements	
Assignments	
If-statements	
Loops	
Exceptions

Arm	Specification	
Language SMT

Arithmetic	operations	
Boolean	operations	
Bit	Vectors	
Arrays		
Dependent	Types	
Functions	
Statements	
Assignments	
If-statements	
Loops	
Exceptions

Results
Most properties proved in under 100 seconds (each)

Found 12 bugs in specification:

- debug, exceptions, system registers, security

Found bugs in English prose:

- ambiguous, imprecise, incorrect, …

!21

Public release of Arm v8-A specification
Enable	formal	verificaKon	of	soUware	and	tools	

Machine	readable	

Up	to	date	(v8.5-A	architecture	released	Sept’18)	

AutomaKc	translaKon	to	Sail	and	Isabelle	with	Cambridge	University	

					-	Rerun	Architecture	Conformance	Suite	

					-	“ISA	SemanKcs	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	

h`ps://developer.arm.com/products/architecture/a-profile/exploraKon-tools	
h`ps://github.com/alastairreid/mra_tools	
h`ps://github.com/rems-project/sail-arm

!22

https://developer.arm.com/products/architecture/a-profile/exploration-tools
https://github.com/alastairreid/mra_tools
https://github.com/rems-project/sail-arm

Summary
Mechanized major commercial architecture specification

• High quality, broad scope

Formal validation of processors

• Applied to multiple commercial processors

• Adapted for use with other architectures

Formal validation of processor specification

Public release of specification

• Translation of Arm’s specification to Sail enabling Isabelle proofs w/ Cambridge

!23

“Trustworthy Specifications of the ARM v8-A and v8-M architecture” FMCAD 2016

“End to End Verification of ARM processors with ISA Formal” CAV 2016

“Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

[“ISA Semantics for ARM v8-A, RISC-V, and CHERI-MIPS” POPL 2019]

Performance

!24

Software

Hardware

Instruction Stream

Performance

!25

Sequential Instruction Stream

Sequential Software

Parallel Hardware

Performance

!25

Out-of-Order
Execution

Sequential Instruction Stream

Sequential Software

Parallel Hardware

Performance

!26

Parallel Hardware
Parallel Instruction Streams

Sequential Software

Performance

!26

Parallel Hardware

Parallelizing
Compiler

Parallel Instruction Streams

Sequential Software

Performance

!26

Parallel Hardware

Parallelizing
Compiler

Parallel Instruction Streams

Sequential Software

Annotations
+

Performance

!27

Parallel Hardware

Parallelizing
Compiler

Sequential Software

Annotations
+

Challenges
Annotations depend on features of hardware and domain

Programmer burden

Compiler transformations

!28

Ardbeg (2006-2008)
Goal: Build a commercial software defined radio system for LTE protocol

Subsystem:

• 2-4x 450MHz VLIW processors

• 512-bit predicated SIMD

• 14.4 Gops @ 250mW (each)

• Custom accelerators (Viterbi, Turbo, …)

!29

Heterogeneous

Specialized cores

Local memories per processor

Explicit data copying (DMA)

!30

Homogeneous

General Purpose cores

Cache hierarchy

Cache coherence

Asymmetric MP Symmetric MP

Heterogeneous

Specialized cores

Local memories

Explicit data copying (DMA)

!31

Pipeline Parallelism

Explicit function placement (RPC)

Explicit data placement

Static Distributed Shared Memory

Language Features

Don’t hide expensive operations

Annotations direct restructuring

Annotation checking and inference

Programmer in control

Portability

Rapid design space exploration

Hardware + Requirements

!32

int x[100];

int y[100];

int z[100];

while (1) {

 get(x);

 foo(y,x);

 bar(z,y);

 baz(z);

 put(z);

}

int x[100];

int y[100];

int z[100];

while (1) {

 get(x);

 foo(y,x) @ P0;

 SYNC(x) @ DMA;

 bar(z,y) @ P1;

 baz(z) @ P1;

 put(z);

}

!33

Remote Procedure Call

Synchronize data

int x[100];

int y[100];

int z[100];

PIPELINE {

 while (1) {

 get(x);

 foo(y,x) @ P0;

 SYNC(x) @ DMA;

 FIFO(y);

 bar(z,y) @ P1;

 baz(z) @ P1;

 put(z);

 }

}

!34

Use pipeline

Parallelism

Transfer data

between threads

int x[100] @ {M0};

int y[100] @ {M0,M1};

int z[100] @ {M1};

PIPELINE {

 while (1) {

 get(x@M0);

 foo(y@M0, x@M0) @ P0;

 SYNC(y,M1,M0) @ DMA;

 FIFO(y@M1);

 bar(z@M1, y@M1) @ P1;

 baz(z@M1) @ P1;

 put(z@M1);

 }

}

!35

!36

 int x[100] @ {M0};

 int y0[100] @ {M0};

 int y1a[100] @ {M1};

 while (1) {

 get(x);

 foo(y0, x) @ P0;

 memcpy(y1a,y0,…) @ DMA;

 fifo_put(&f, y1a);

 }

 int y1b[100] @ {M1};

 int z[100] @ {M1};

 while (1) {

 fifo_get(&f, y1b);

 bar(z, y1b) @ P1;

 baz(z) @ P1;

 put(z);

 }

Summary
Part of “Ardbeg” Software Defined Radio project

• Energy efficient LTE radio modem

• Competitive with fixed function hardware

Language extensions balance performance and portability

• Programmer uses annotations to control software-hardware mapping

• Compiler restructures program to implement annotations

Defining hw/sw interface at a higher level to enable greater performance

!37

“SoC-C: Efficient Programming Abstractions for Heterogeneous Multicore Systems on Chip” CASES 2016

“Reducing inter-task latency in a multiprocessor system” US 8,359,588

[“From SODA to scotch: The evolution of a wireless baseband processor” MICRO 2018]

Hardware-Software Interfaces
Two aspects of interface explored

• High Quality Specifications

• Performance

Future work

• Security

• Can we verify that ISA is “secure”?

• Parallelism

• Can we apply ideas to other parallelism frameworks?

!38

Fin

!39

