Hardware-Software Interfaces
Quality and Performance

Alastair Reid

Research
Arm Ltd

"MANUALI

Aspects of hw/sw interface

Quality of specification

Performance

Compiler, JIT,
Verification IP OsS, ... ISA Spec
(VeriloQ) \ T / (HOL)

Architecture

Testsuite D eference ISA Spec
(Coq)

(-S) Manual (.pdf)

=

ISA Spec
(HOL)

ISA Spec
(Coq)

,»;

- \ ISA Spec
Documentation (.smt2)

(-pdf)

Testsuite

(-S)

(-C)

Challenges

Increased requirements
What specification language?

Loss of redundancy - all eggs in one basket

Creating Specifications

Creati
eating Specifications

Rirjc

_~~ution of 'mstruct'\ons

—vacuted by ON€

E .
* AC ckup is by any of
of th Feation.
. old reset. e following:
A W ' any behavior
arm r .
o eset. ception level,
Entry to Deb £a.8, BL, BRK;
HVC, LoD, - ¢ Pree C Ug State
moti .
For the B, BL, BRK, HvC, IS8, NOP, SML, ars~ b tion by a h1 h ification of the
o . gher :
instruction, behavior 15 consistent with execution O1 © pr 101‘1ty
. cxcent
. The instruction ongma\\y fetched ption
. A fetch of the modified instruction
[fone thread 0 execution changes condmona\ branch nstruction, such as B OF BL, tO another conditiona\ instruction
and the change ffects both the condition field and the branch target, execution of the changed instruction by another
thread of execution pefore the change 18 5 nchronized can lead 10 either
. The old condition being associate with the new target address
g assocmted with the old targel address
either betore or after the change 10 the branch

Croati
reating Specifications

Rirjc
Exit fi-‘()"‘*‘on of instructions
° p 1S by an —vacuted by OD€ thre” \\'Qé
A Cold y of the © O‘Oe
C
o Warm reset S. W ™
E ' $S© q.}\'& Lk
ntry to T e d o
HVC, 150 . O QQ\\OQ oc]\‘b"e & e
T Pre- 5 P s oS® 6,05\'9\
For the B, BL, BRK, HVC, 158, N7 ;60{0 Q\@‘é\g&e s,&‘b/'&GvQ
instruction; behavior” G\p) ,@5@5 »{\0’0
] O WO (P g

. The 0@ > G Q ((q(? o
: © S O ot O

\X,Qé,‘b«’ $e,\\o eg@é’ O A\ .

$0 ¢ \0\06 \0600'6\ ov $@& oL, 10 another cond tional instruction
Cﬁ« . ’?ﬂ\e’? ,&0‘06 O &P oution of the changed nstruction bY another
N ¢ e
o Q%% QOY\ ", 1o either
© ‘33 > oW target address
° 66,\;{\009 ith the old target address
D
D 7 ess of whether the condition; either betore or after the change 10 the branch

Creating Specifications

: o
: ion |
—~~ution of \nsﬂ'uc“ ne thre” ‘060’Q
RJRJC EXlt f . . ~vecuted by O \Q
rom lockup is bv anv of tha + AO® |
Table B2-1 Encoding of the DMB and DSB <option> parameter
Accesses Shareability domain
Before th After th
e1o e the fte. the Full system Outer Shareable Inner Shareable Non-shareable
barrier barrier
Reads and writes Reads and writes ~ SY OSH ISH NSH
Writes Writes ST OSHST ISHST NSHST
Reads Reads and writes LD OSHLD ISHLD NSHLD
» \, > e W
o A\t \
N ?sg\ %Q‘QOVW target address
Q\QG ¢ ?) o ‘é& th the old target address ey the “hange t the braﬂCh
. I
* OO T : ther before OF aits
© ‘566\ of «hether the condition, €1
1CS

Creating Specifications

nstTUCﬂOns

. —wecuted by one thre” ‘06

~ution of [
1Tl) \O

~hy anv nf tha £ A0

~=~nding of the DMB and DSB <option> parameter

‘b\/’
O 7 aiess 0r -

Pseudocode

3130 29 28 27 26 2524 23 22212019181716151413121110 9 8 7 6 5 4 3 2 1 O

cond [0 0f]1]o 1 0 0[S Rn | Rd | imm12

For the case when cond 1s 0b1111, see Unconditional instructions on page AS5-214.

1f Rn == ‘1111" && S == ‘@’ then SEE ADR;
if Rn == ‘1101’ then SEE ADD (SP plus immediate);
1f Rd == ‘1111" && S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); setflags = (S == ‘1"); 1mm32 = ARMExpandImm(imml2);
1f ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(R[n], 1mm32, ‘0’);
if d == 15 then
ALUWritePC(result); // setflags 1s always FALSE here
else
R[d] = result;
1f setflags then
APSR.N = result<31>;
PSR.Z = IsZeroBit(result);
PSR.C = carry;
PSR.V = overflow;

> > >

Arm Pseudocode

~40,000 lines

- 32-bit and 64-bit modes

- All 4 encodings: Thumb16, Thumb32, ARM32, ARM64

- All instructions (> 1300 encodings)

- All 4 privilege levels (User, Supervisor, Hypervisor, Secure Monitor)
- Both Security modes (Secure / NonSecure)

- MMU, Exceptions, Interrupts, Privilege checks, Debug, TrustZone,

Status at the start

Vague, incomplete, inaccurate language description
No tools (parser, type checker)

Incomplete (around 15% missing)

Unexecuted, untested

Senior architects believed that an executable spec was
Impossible
Not useful
Less readable
Less correct

Architectural Conformance Suite

Processor architectural compliance sign-oftf

Large

e v8-A 32,000 test programs, billions of instructions
e v38-M 3,500 test programs, > 250 million instructions

Thorough

e Jests dark corners of specification

Hard to run

e Requires additional testing infrastructure

10

Progress testing Arm specification

Does not parse, does not type check
Can’t get out of reset e
Can’t execute first instruction

Can’t execute first 100 instructions 50

Passes 90% of tests

Passes 99% of tests

11

Formally validating Arm processors

Arm
Processor
Verilog
Model
Checker
Arm Translate

Specification to Verilog

12

Arm Specification
Language

Arithmetic operations
Boolean operations
Bit Vectors
Unbounded integers
Arrays
Dependent Types
Statements
Assignments
If-statements
Loops
Exceptions

13

Verilog

Arithmetic operations
Boolean operations
Bit Vectors
Unbeunded-integers
Arrays
DependentTypes
Statements
Assignments
If-statements

Ltoeps
Exceptions

Checking an instruction

Checking an instruction

CMP LDR

'STR BNE

Lessons Learned from validating processors

Very effective way to find bugs in implementations

Applied to commercial processors
o (Cortex-A32, Cortex-A35, Cortex-A53, Cortex-A55, Cortex-A65
e (Cortex-R52
e (Cortex-M4, Cortex-M7, Cortex-M33

Formally validating implementations is effective at finding bugs in spec

Rule JRJC
Exit from lockup 1s by any of the following:
* A Cold reset.
* A Warm reset.
* Entry to Debug state.
* Preemption by a higher priority processor exception.

17

Rule R
State Change X by any of the following:

* Event A
e Event B

* State Change C
*Event D

17

Rule R
State Change X by any of the following:

* Event A
e Event B

* State Change C
*Event D

RuleR: X—=-=AvBvCvD

17

State Change X Exit from lockup Fell(LockedUp)

Event A A Cold reset Called(TakeColdReset)
Event B A Warm reset Called(TakeReset)
State Change C Entry to Debug state Rose(Halted)

Event D Preemption by a higher Called(ExceptionEntry)

priority processor
exception

Fell(LockedUp) - Called(TakeColdReset)
v Called(TakeReset)

v Rose(Halted)
v Called(ExceptionEntry)

Rule JRJC
Exit from lockup 1s by any of the following:
* A Cold reset.
* A Warm reset.
* Entry to Debug state.
* Preemption by a higher priority processor exception.

19

Arm Specification

SMT

Language
Arithmetic operations Arithmetic operations
Boolean operations Boolean operations
Bit Vectors Bit Vectors
Arrays AFrrays
Dependent Types DependentTypes
Functions Funhettons
Statements Statements
Assignments Assignments
If-statements H-statements
Loops Loops

Exceptions Exceptions

20

Results

Most properties proved in under 100 seconds (each)

Found 12 bugs In specification:
- debug, exceptions, system registers, security

Found bugs in English prose:
- ambiguous, Imprecise, Incorrect, ...

21

Public release of Arm v8-A specification

Enable formal verification of software and tools

Machine readable

Up to date (v8.5-A architecture released Sept’18)

Automatic translation to Sail and Isabelle with Cambridge University
- Rerun Architecture Conformance Suite

- “ISA Semantics for ARM v8-A, , RISC-V, and CHERI-MIPS,” POPL 2019

nttps://developer.arm.com/products/architecture/a-profile/exploration-tools
nttps://github.com/alastairreid/mra_tools
nttps://github.com/rems-project/sail-arm

22

https://developer.arm.com/products/architecture/a-profile/exploration-tools
https://github.com/alastairreid/mra_tools
https://github.com/rems-project/sail-arm

Summary

Mechanized major commercial architecture specification
e High quality, broad scope
Formal validation of processors

e Applied to multiple commercial processors
o Adapted for use with other architectures

Formal validation of processor specification

Public release of specification

 Translation of Arm’s specification to Sail enabling Isabelle proofs w/ Cambridge

“Trustworthy Specifications of the ARM v8-A and v8-M architecture” FMCAD 2016
“End to End Verification of ARM processors with ISA Formal” CAV 2016
*Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

23

Performance

Software

Instruction Stream

Hardware

Performance

Sequential Software

Sequential Instruction Stream

Parallel Hardware

25

Performance

Sequential Software

Sequential Instruction Stream

a)

Out-of-Order

Execution
_ Y,

Parallel Hardware

25

Performance

Sequential Software

Parallel Instruction Streams

Parallel Hardware

20

Performance

Sequential Software
4)
Parallelizing

Compiler
_ _J

Parallel Instruction Streams

Parallel Hardware

20

Performance

Annotations
+

Sequential Software
4)
Parallelizing

Compiler
_ %

Parallel Instruction Streams

Parallel Hardware

20

Performance

Annotations
+

Sequential Software

4)
Parallelizing

Compiler
_ _J

Parallel Hardware

27

Challenges

Annotations depend on features of hardware and domain
Programmer burden

Compiler transformations

28

Ardbeg (oos-2008)

Goal: Build a commercial software defined radio system for LTE protocol

Subsystem:

o 2-4x 450MHz VLIW processors
e 512-bit predicated SIMD
e 14.4 Gops @ 250mW (each)

e Custom accelerators (Viterbi, Turbo, ...)

29

Asymmetric MP Symmetric MP

Heterogeneous Homogeneous
Specialized cores General Purpose cores
Local memories per processor Cache hierarchy

Explicit data copying (DMA) Cache coherence

30

Hardware + Requirements

Heterogeneous

Specialized cores

Local memories

Explicit data copying (DMA)

Programmer in control
Portability
Rapid design space exploration

Language Features

Pipeline Parallelism

Explicit function placement (RPC)
Explicit data placement

Static Distributed Shared Memory

Don’t hide expensive operations
Annotations direct restructuring
Annotation checking and inference

31

int x[100];
int y[100];
int z[100];

while (1) {

get(x);
foo(y,Xx);

bar(z,y);

baz(z);

put(z);
}

32

int x[100];
int y[100];
int z[100];

while (1) { Remote Procedure Call
get(x);
foo(y,x) @ PO;
Synchronize data — > SYNC(xX) @ DMA;

bar(z,y) @ P1;
baz(z) @ P1;

put(z);

33

int x[100];

int y[100];

int z[100];
Usepipeline_ | PIPELINE {
Parallelism while (1){
get(x);

foo(y,x) @ PO;
SYNC(x) @ DMA;
Transfer data

P O— FIFO(y);

bet thread
etween tnreaqds bar(z,y) @ P‘I,
baz(z) @ P1;
put(z);

34

int x[100] @ {MO};

int y[100] @ {MO,M1};

int z[100] @ {M1};

PIPELINE {

while (1) {

get(x@MO);
foo(y@MO0, x@MO0) @ PO;
SYNC(y,M1,M0) @ DMA;
FIFO(y@M1);
bar(z@M1, y@M1) @ P1;
baz(z@M1) @ P1;
put(z@M1);

39

int x[100] @ {MO3; int y1b[100] @ {M1};

intyO[100] @ {MOj; int 2[100] @ {M1};

while (1) 1 fifo_get(&f, y1b);
get(x); bar(z, y1b) @ P1;
fOO(yO, X) @ PO, baZ(Z) @ P1,
memcpy(y1a,y0,...) @ DMA; out(2):
fifo_put(&f, y1a); }

J

36

Summary

Part of “Ardbeg” Software Defined Radio project

e Energy efficient LTE radio modem
o Competitive with fixed function hardware
Language extensions balance performance and portability

e Programmer uses annotations to control software-hardware mapping
e Compiler restructures program to implement annotations

Defining hw/sw interface at a higher level to enable greater performance

“SoC-C: Efficient Programming Abstractions for Heterogeneous Multicore Systems on Chip” CASES 2016
“Reducing inter-task latency in a multiprocessor system” US 8,359,588
[“From SODA to scotch: The evolution of a wireless baseband processor” MICRO 2018]

of

Hardware-Software Interfaces

Two aspects of interface explored
e High Quality Specifications
e Performance

Future work

® Security
e Can we verify that ISA is “secure”?
e Parallelism
e (Can we apply ideas to other parallelism frameworks?

33

