
©	2017	Arm	Limited	

Engineering	and	Use	of	
Large	Formal	Specifications Alastair	Reid	

Arm	Research	

@alastair_d_reid

©	2017	Arm	Limited	�2

More Less

Data	

Performance	

Machine	Learning	

Internet	of	Things	

Smart	Homes	

Self	Driving	Cars	

Social	Media

Bugs	

Crashes	

Data	loss	

Data	corruption	

Data	leaks	/	theft	

DDoS	attacks	

Cyber-Physical	attacks

©	2017	Arm	Limited	�3

Better	
Programming	
Languages

Better	
System	
Design

Hardware	
Security	

Enforcement

Automatic	
Test	

Generation

Fuzz	Testing

Exploit	
Detection

Better	
Bug	

Finding

Formal	
Verification

Legal	/	
Regulatory

©	2017	Arm	Limited	�4

©	2017	Arm	Limited	�5

Specification

Specification Specification

Specification

Specification

©	2017	Arm	Limited	�6

What	(formal)	specifications	do	we	need?

Libraries:	stdio.h,	OpenGL,	…	

Languages:	C,	C++,	ML,	Javascript,	Verilog,	…	

Network:	TCP/IP,	OAuth,	DNS,	TLS,	WiFi,	…	

Filesystems:	FAT32,	NTFS,	ext4,	…	

OSes:	Posix/Linux	system	call,	Linux	device	driver,	KVM,	UEFI,	…	

Hardware:	CPU,	PCIe,	AMBA,	NIC,	…

©	2017	Arm	Limited	�7

Critical	properties	of	specifications

Scope	
-	Completeness	

-	Not	abstracting	out	critical	detail	

Applicability	
-	Version	agnostic	

-	Vendor	agnostic	

Trustworthiness

©	2017	Arm	Limited	�8

Overcoming	the	Specification	Bottleneck

Creating	formal	specifications	
Testing	specifications	
Getting	buy	in	
Using	specifications	
Formal	validation	of	specifications	
Making	your	specifications	public

“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016	
“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016	
“Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications,”	OOPSLA	2017	
“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	

https://alastairreid.github.io/papers/

©	2017	Arm	Limited	�9

Creating formal specifications

Testing specifications

Getting buy in

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016

©	2017	Arm	Limited	�10

Creating	Specifications

©	2017	Arm	Limited	�10

Creating	Specifications

©	2017	Arm	Limited	�10

Creating	Specifications

©	2017	Arm	Limited	�10

Creating	Specifications

©	2017	Arm	Limited	�10

Creating	Specifications

©	2017	Arm	Limited	�10

Creating	Specifications

©	2017	Arm	Limited	�11

Pseudocode

©	2017	Arm	Limited	�12

ARM	Pseudocode

~40,000	lines	

-	32-bit	and	64-bit	modes	

-	All	4	encodings:	Thumb16,	Thumb32,	ARM32,	ARM64	

-	All	instructions	(>	1300	encodings)	

-	All	4	privilege	levels	(User,	Supervisor,	Hypervisor,	Secure	Monitor)	

-	Both	Security	modes	(Secure	/	NonSecure)	

-	MMU,	Exceptions,	Interrupts,	Privilege	checks,	Debug,	TrustZone,	…

©	2017	Arm	Limited	�13

Status	at	the	start

- No	language	spec	
- No	tools	(parser,	type	checker)	
- Incomplete	(around	15%	missing)	
- Unexecuted,	untested	
- Senior	architects	believed	that	an	executable	spec	was	

- Impossible	
- Not	useful	
- Less	readable	
- Less	correct

©	2017	Arm	Limited	�14

Architectural	Conformance	Suite

Processor	architectural	compliance	sign-off	

Large	
• v8-A	32,000	test	programs,	billions	of	instructions	
• v8-M	3,500	test	programs,	>	250	million	instructions	

Thorough	
• Tests	dark	corners	of	specification	

Hard	to	run	
• Requires	additional	testing	infrastructure

©	2017	Arm	Limited	�15 ©	2017	Arm	Limited	

Progress	in	testing	Arm	specification

- Does	not	parse,	does	not	typecheck

- Can’t	get	out	of	reset

- Can’t	execute	first	instruction

- Can’t	execute	first	100	instructions

- …

- Passes	90%	of	tests

- Passes	99%	of	tests

- …

0

50

100

©	2017	Arm	Limited	�16

Measuring	architecture	coverage	of	tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf

©	2017	Arm	Limited	�17

Creating a Virtuous Cycle

ARM	
Spec

©	2017	Arm	Limited	�18

Lessons	learned	about	engineering	a	specification

Specifications	contain	bugs	

Huge	value	in	being	able	to	run	existing	test	suites	

-	Need	to	balance	against	benefits	of	non-executable	specs	

Find	ways	to	provide	direct	benefit	to	other	users	of	spec	

-	They	will	do	some	of	the	testing/debugging	for	you	

-	They	will	support	getting	your	changes/spec	adopted	as	master	spec	

-	Creates	Virtuous	Cycle

©	2017	Arm	Limited	�19

Using Specifications

“End to End Verification of ARM processors with ISA Formal,” CAV 2016

©	2017	Arm	Limited	�20

Verification	of	Implementations	
- Bounded	Model	Checking	
- Testing	(Golden	Reference)	
- Deductive	Reasoning

Verification	of	Clients	
- Formally	verifying	OS	code	/	etc.	
- Verifying	Compilers/Linkers

Generation	
- Testsuites	(Concolic)	
- Simulators	
- Peephole	Optimisations	
- Binary	Translators

Documentation	
- Generate	PDF/HTML	
- Interactive	specifications

Specification	Extension	
- Testing	/	Exploration

Static	Analysis	
- Abstract	interpretation	of	binaries	
- Decompilation	of	binaries	
- Reverse	engineering	tools

Instrumented	Execution	
- Measure	Coverage	
- Driving	Fuzz	Testing

©	2017	Arm	Limited	�21

Formally	validating	ARM	processors	-	using	an	existing	tool

ARM
Specification

ARM
Processor

Translate	
to	Verilog

Verilog	
Model	
Checker

©	2017	Arm	Limited	�22

Checking	an	instrucpon

ADD

©	2017	Arm	Limited	�22

Checking	an	instrucpon

ADDCMP LDR STR BNE

Context

©	2017	Arm	Limited	�23

Lessons	Learned	from	validating	processors

Very	effective	way	to	find	bugs	in	implementations	

Formally	validating	implementation	is	effective	at	finding	bugs	in	spec	

-	Try	to	find	most	of	the	bugs	in	your	spec	before	you	start	

Huge	value	in	being	able	to	use	spec	to	validate	implementations	

-	Helps	get	formal	specification	adopted	as	part	of	official	spec	

Spec

©	2017	Arm	Limited	�24

Formal Validation of
Specifications

“Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA 2017

©	2017	Arm	Limited	�25

One	Specification	to	rule	them	all?

Architecture	Spec

Compliance	Tests

Processors

Reference	Simulator

©	2017	Arm	Limited	�26

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

©	2017	Arm	Limited	�26

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									

©	2017	Arm	Limited	�26

Rule JRJC
Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									

Rule	R:				X	→	A	∨	B	∨	C	∨	D

©	2017	Arm	Limited	�27

State	Change Exit from lockup Fell(LockedUp)

Event A Cold reset Called(TakeColdReset)

Event A Warm reset Called(TakeReset)

State	Change Entry to Debug state Rose(Halted)

Event Preemption by a higher
priority processor
exception

Called(ExceptionEntry)

©	2017	Arm	Limited	�28

“Eyeball	Closeness”
Rule JRJC

Exit from lockup is by any of the following:
• A Cold reset.
• A Warm reset.
• Entry to Debug state.
• Preemption by a higher priority processor exception.

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)

©	2017	Arm	Limited	�29

Rule VGNW
Entry to lockup from an exception causes
• Any Fault Status Registers associated with the exception

to be updated.
• No update to the exception state, pending or active.
• The PC to be set to 0xEFFFFFFE.
• EPSR.IT to become UNKNOWN.

In addition, HFSR.FORCED is not set to 1.

Out	of	date
Misleading

Ambiguous
Untestable

©	2017	Arm	Limited	�30

Counterexample

v8-M Spec

Rules

Convert Z3	
SMT	
Solver

+

~10,000	lines ~1,000,000	lines

©	2017	Arm	Limited	�31

Lessons	Learned	from	validating	specifications

Redundancy	essential	for	detecting	errors	

-	Detected	subtle	bugs	in	security,	exceptions,	debug,	…	

-	Found	bugs	in	English	prose	

Need	set	of	‘orthogonal’	properties	

-	Invariants,	Security	properties,	Reachability	properties,	etc.	

Eyeball	closeness	

Needed	to	translate	specification	to	another	language	to	let	us	use	other	tools

©	2017	Arm	Limited	�32

Making your specification

public

©	2017	Arm	Limited	�33

Public	release	of	machine	readable	Arm	specification

Enable	formal	verificapon	of	sotware	and	tools	

Machine	readable	

Releases:	

v8.2	(4/2017)	

v8.3	(10/2017)	

v8.4	(6/2018)	

v8.5	(9/2018)	
hups://developer.arm.com/products/architecture/a-profile/explorapon-tools	
hups://github.com/alastairreid/mra_tools	
hups://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat

©	2017	Arm	Limited	�34

Cambridge	University	Specs/Tools

From	“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	
Used	with	permission	of	REMS	Group,	Cambridge	University

©	2017	Arm	Limited	�34

Cambridge	University	Specs/Tools

From	“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	
Used	with	permission	of	REMS	Group,	Cambridge	University

x86	(ACL2)

Missing?

©	2017	Arm	Limited	�34

Cambridge	University	Specs/Tools

From	“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	
Used	with	permission	of	REMS	Group,	Cambridge	University

x86	(ACL2)

Missing?

	ACL2

Missing?

©	2017	Arm	Limited	�35

Work in Progress:

Security of Architecture
Specifications

©	2017	Arm	Limited	�36

Validating	security	of	processor	architectures

Scope	

-	Hardware-based	Security	Enforcement	(HSE)	Mechanisms	

-	Confidentiality,	Integrity,	Availability	

Challenges	

-	Compositional	Attacks	

-	Cyclic	dependencies	between	HSEs	

-	Microarchitectural	storage/timing	channels

©	2017	Arm	Limited	�37

The	Specification	Bottleneck:	Modelling	Real	World	Artifacts

-	Trustworthiness,	Scope	and	Applicability	

-	Significant	Engineering	Effort	

-	Importance	of	sharing	specifications	across	many	users

Spec

©	2017	Arm	Limited	�38

Thanks

Alasdair Armstrong (Cambridge U.)
Alex Chadwick (ARM)
Ali Zaidi (ARM)
Anastasios Deligiannis (ARM)
Anthony Fox (Cambridge U.)
Ashan Pathirane (ARM)
Belaji Venu (ARM)
Bradley Smith (ARM)
Brian Foley (ARM)
Curtis Dunham (ARM)
David Gilday (ARM)
David Hoyes (ARM)
David Seal (ARM)
Daniel Bailey (ARM)
Erin Shepherd (ARM)
Francois Botman (ARM)

George Hawes (ARM)
Graeme Barnes (ARM)
Isobel Hooper (ARM)
Jack Andrews (ARM)
Jacob Eapen (ARM)
Jon French (Cambridge U.)
Kathy Gray (Cambridge U.)
Krassy Gochev (ARM)
Lewis Russell (ARM)
Matthew Leach (ARM)
Meenu Gupta (ARM)
Michele Riga (ARM)
Milosch Meriac (ARM)
Nigel Stephens (ARM)
Niyas Sait (ARM)
Peng Wang (ARM)

Peter Sewell (Cambridge U.)
Peter Vrabel (ARM)
Richard Grisenthwaite (ARM)
Rick Chen (ARM)
Simon Bellew (ARM)
Thomas Grocutt (ARM)
Will Deacon (ARM)
Will Keen (ARM)
Wojciech Meyer (ARM)
(and others)

Thank	You!	
Danke!	
Merci!	
谢谢!	
ありがとう!	
Gracias!	
Kiitos!

©	2017	Arm	Limited	�39

@alastair_d_reid

“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016	
“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016	
“Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications,”	OOPSLA	2017	
“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	

https://alastairreid.github.io/papers/		

