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What	(formal)	specifications	do	we	need?

Libraries:	stdio.h,	OpenGL,	…	

Languages:	C,	C++,	ML,	Javascript,	Verilog,	…	

Network:	TCP/IP,	OAuth,	DNS,	TLS,	WiFi,	…	

Filesystems:	FAT32,	NTFS,	ext4,	…	

OSes:	Posix/Linux	system	call,	Linux	device	driver,	KVM,	UEFI,	…	

Hardware:	CPU,	PCIe,	AMBA,	NIC,	…
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Critical	properties	of	specifications

Scope	
-	Completeness	

-	Not	abstracting	out	critical	detail	

Applicability	
-	Version	agnostic	

-	Vendor	agnostic	

Trustworthiness



©	2017	Arm	Limited	�8

Overcoming	the	Specification	Bottleneck

Creating	formal	specifications	
Testing	specifications	
Getting	buy	in	
Using	specifications	
Formal	validation	of	specifications	
Making	your	specifications	public

“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016	
“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016	
“Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications,”	OOPSLA	2017	
“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	

https://alastairreid.github.io/papers/
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Creating formal specifications

Testing specifications

Getting buy in

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016



©	2017	Arm	Limited	�10

Creating	Specifications
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Creating	Specifications
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Creating	Specifications
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Pseudocode
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ARM	Pseudocode

~40,000	lines	

-	32-bit	and	64-bit	modes	

-	All	4	encodings:	Thumb16,	Thumb32,	ARM32,	ARM64	

-	All	instructions	(>	1300	encodings)	

-	All	4	privilege	levels	(User,	Supervisor,	Hypervisor,	Secure	Monitor)	

-	Both	Security	modes	(Secure	/	NonSecure)	

-	MMU,	Exceptions,	Interrupts,	Privilege	checks,	Debug,	TrustZone,	…
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Status	at	the	start

- No	language	spec	
- No	tools	(parser,	type	checker)	
- Incomplete	(around	15%	missing)	
- Unexecuted,	untested	
- Senior	architects	believed	that	an	executable	spec	was	

- Impossible	
- Not	useful	
- Less	readable	
- Less	correct
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Architectural	Conformance	Suite

Processor	architectural	compliance	sign-off	

Large	
• v8-A	32,000	test	programs,	billions	of	instructions	
• v8-M	3,500	test	programs,	>	250	million	instructions	

Thorough	
• Tests	dark	corners	of	specification	

Hard	to	run	
• Requires	additional	testing	infrastructure
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Progress	in	testing	Arm	specification

- Does	not	parse,	does	not	typecheck

- Can’t	get	out	of	reset

- Can’t	execute	first	instruction

- Can’t	execute	first	100	instructions

- …

- Passes	90%	of	tests

- Passes	99%	of	tests

- …

0

50

100
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Measuring	architecture	coverage	of	tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf 
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Creating a Virtuous Cycle

ARM	
Spec
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Lessons	learned	about	engineering	a	specification

Specifications	contain	bugs	

Huge	value	in	being	able	to	run	existing	test	suites	

-	Need	to	balance	against	benefits	of	non-executable	specs	

Find	ways	to	provide	direct	benefit	to	other	users	of	spec	

-	They	will	do	some	of	the	testing/debugging	for	you	

-	They	will	support	getting	your	changes/spec	adopted	as	master	spec	

-	Creates	Virtuous	Cycle
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Using Specifications

“End to End Verification of ARM processors with ISA Formal,” CAV 2016
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Verification	of	Implementations	
- Bounded	Model	Checking	
- Testing	(Golden	Reference)	
- Deductive	Reasoning

Verification	of	Clients	
- Formally	verifying	OS	code	/	etc.	
- Verifying	Compilers/Linkers

Generation	
- Testsuites	(Concolic)	
- Simulators	
- Peephole	Optimisations	
- Binary	Translators

Documentation	
- Generate	PDF/HTML	
- Interactive	specifications

Specification	Extension	
- Testing	/	Exploration

Static	Analysis	
- Abstract	interpretation	of	binaries	
- Decompilation	of	binaries	
- Reverse	engineering	tools

Instrumented	Execution	
- Measure	Coverage	
- Driving	Fuzz	Testing
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Formally	validating	ARM	processors	-	using	an	existing	tool

ARM 
Specification

ARM 
Processor

Translate	
to	Verilog

Verilog	
Model	
Checker
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Checking	an	instrucpon

ADD
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Checking	an	instrucpon

ADDCMP LDR STR BNE

Context
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Lessons	Learned	from	validating	processors

Very	effective	way	to	find	bugs	in	implementations	

Formally	validating	implementation	is	effective	at	finding	bugs	in	spec	

-	Try	to	find	most	of	the	bugs	in	your	spec	before	you	start	

Huge	value	in	being	able	to	use	spec	to	validate	implementations	

-	Helps	get	formal	specification	adopted	as	part	of	official	spec	

Spec
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Formal Validation of 
Specifications

“Who guards the guards?  Formal Validation of ARM v8-M Specifications” OOPSLA 2017
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One	Specification	to	rule	them	all?

Architecture	Spec

Compliance	Tests

Processors

Reference	Simulator
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Rule JRJC 
Exit from lockup is by any of the following: 
• A Cold reset. 
• A Warm reset. 
• Entry to Debug state. 
• Preemption by a higher priority processor exception.
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Rule JRJC 
Exit from lockup is by any of the following: 
• A Cold reset. 
• A Warm reset. 
• Entry to Debug state. 
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									
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Rule JRJC 
Exit from lockup is by any of the following: 
• A Cold reset. 
• A Warm reset. 
• Entry to Debug state. 
• Preemption by a higher priority processor exception.

State	Change	X				
Event	A													
Event	B															

State	Change	C																
Event	D																																																																																												

R									

Rule	R:				X	→	A	∨	B	∨	C	∨	D
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State	Change Exit from lockup Fell(LockedUp)

Event A Cold reset Called(TakeColdReset)

Event A Warm reset Called(TakeReset)

State	Change Entry to Debug state Rose(Halted)

Event Preemption by a higher 
priority processor 
exception

Called(ExceptionEntry)
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“Eyeball	Closeness”
Rule JRJC 

Exit from lockup is by any of the following: 
• A Cold reset. 
• A Warm reset. 
• Entry to Debug state. 
• Preemption by a higher priority processor exception.

Fell(LockedUp)	→	Called(TakeColdReset)	
																												∨	Called(TakeReset)	
																												∨	Rose(Halted)	
																												∨	Called(ExceptionEntry)
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Rule VGNW 
Entry to lockup from an exception causes 
• Any Fault Status Registers associated with the exception 

to be updated. 
• No update to the exception state, pending or active. 
• The PC to be set to 0xEFFFFFFE. 
• EPSR.IT to become UNKNOWN. 

In addition, HFSR.FORCED is not set to 1.

Out	of	date
Misleading

Ambiguous
Untestable
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Counterexample

v8-M Spec

Rules

Convert Z3	
SMT	
Solver

+

~10,000	lines ~1,000,000	lines
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Lessons	Learned	from	validating	specifications

Redundancy	essential	for	detecting	errors	

-	Detected	subtle	bugs	in	security,	exceptions,	debug,	…	

-	Found	bugs	in	English	prose	

Need	set	of	‘orthogonal’	properties	

-	Invariants,	Security	properties,	Reachability	properties,	etc.	

Eyeball	closeness	

Needed	to	translate	specification	to	another	language	to	let	us	use	other	tools
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Making your specification

public
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Public	release	of	machine	readable	Arm	specification

Enable	formal	verificapon	of	sotware	and	tools	

Machine	readable	

Releases:	

v8.2	(4/2017)	

v8.3	(10/2017)	

v8.4	(6/2018)	

v8.5	(9/2018)	
hups://developer.arm.com/products/architecture/a-profile/explorapon-tools	
hups://github.com/alastairreid/mra_tools	
hups://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
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Cambridge	University	Specs/Tools

From	“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	
Used	with	permission	of	REMS	Group,	Cambridge	University
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Cambridge	University	Specs/Tools

From	“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	
Used	with	permission	of	REMS	Group,	Cambridge	University

x86	(ACL2)

Missing?
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Cambridge	University	Specs/Tools

From	“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	
Used	with	permission	of	REMS	Group,	Cambridge	University

x86	(ACL2)

Missing?

	ACL2

Missing?
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Work in Progress:

Security of Architecture 
Specifications
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Validating	security	of	processor	architectures

Scope	

-	Hardware-based	Security	Enforcement	(HSE)	Mechanisms	

-	Confidentiality,	Integrity,	Availability	

Challenges	

-	Compositional	Attacks	

-	Cyclic	dependencies	between	HSEs	

-	Microarchitectural	storage/timing	channels
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The	Specification	Bottleneck:	Modelling	Real	World	Artifacts

-	Trustworthiness,	Scope	and	Applicability	

-	Significant	Engineering	Effort	

-	Importance	of	sharing	specifications	across	many	users

Spec
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Alasdair Armstrong (Cambridge U.)
Alex Chadwick (ARM)
Ali Zaidi (ARM)
Anastasios Deligiannis (ARM)
Anthony Fox (Cambridge U.)
Ashan Pathirane (ARM)
Belaji Venu (ARM)
Bradley Smith (ARM)
Brian Foley (ARM)
Curtis Dunham (ARM)
David Gilday (ARM)
David Hoyes (ARM)
David Seal (ARM)
Daniel Bailey (ARM)
Erin Shepherd (ARM)
Francois Botman (ARM)

George Hawes (ARM)
Graeme Barnes (ARM)
Isobel Hooper (ARM)
Jack Andrews (ARM)
Jacob Eapen (ARM)
Jon French (Cambridge U.)
Kathy Gray (Cambridge U.)
Krassy Gochev (ARM)
Lewis Russell (ARM)
Matthew Leach (ARM)
Meenu Gupta (ARM)
Michele Riga (ARM)
Milosch Meriac (ARM)
Nigel Stephens (ARM)
Niyas Sait (ARM)
Peng Wang (ARM)

Peter Sewell (Cambridge U.)
Peter Vrabel (ARM)
Richard Grisenthwaite (ARM)
Rick Chen (ARM)
Simon Bellew (ARM)
Thomas Grocutt (ARM)
Will Deacon (ARM)
Will Keen (ARM)
Wojciech Meyer (ARM)
(and others)



Thank	You!	
Danke!	
Merci!	
谢谢!	
ありがとう!	
Gracias!	
Kiitos!
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“Trustworthy	Specifications	of	the	ARM	v8-A	and	v8-M	architecture,”	FMCAD	2016	
“End	to	End	Verification	of	ARM	processors	with	ISA	Formal,”	CAV	2016	
“Who	guards	the	guards?		Formal	Validation	of	ARM	v8-M	Specifications,”	OOPSLA	2017	
“ISA	Semantics	for	ARM	v8-A,	,	RISC-V,	and	CHERI-MIPS,”	POPL	2019	

https://alastairreid.github.io/papers/		


