Frw rm vae v mer?
¢ =

Engineering Formal
Specifications of the Arm
Processor Architecture

Alastair Reid
Arm Research
@alastair d reid

© 2017 Arm Limited

Engineering (Wikipedia)

Engineering Is the creative application of science,
mathematical methods, and empirical evidence

to the Innovation, design, construction, operation and
maintenance of structures, machines, materials, devices,
systems, processes, and organizations

for the benefit of humankind.

The loT security problem

— —
<« S

The loT security problem

—
—

DataCenter

—
P —

MicroArchitecture

Physical

The loT security problem

—
—

MicroArchitecture

DataCenter

—
P —

Physical CLKScrew

Rowhammer

The loT security problem

OS + Network

Architecture ‘

DataCenter

—
P —

Spectre

Timing Side = MicroArchitecture
Channels Meltdown

Physical CLKScrew
Rowhammer

DPA

The loT security problem

OS + Network

FiIrmware
SGX Bomb Architecture mGx '

DataCenter

—
4—

Spectre

Timing Side = MicroArchitecture
Channels Meltdown

Physical CLKScrew
Rowhammer

DPA

The loT security problem

OS + Network
—

DataCenter

Firmware Nintendo Switch

SGX Bomb Architecture mGx '

Spectre

—
P —

Timing Side = MicroArchitecture
Channels Meltdown

Physical CLKScrew
Rowhammer

DPA

The loT security problem

OS + Network
—>

DataCenter

Firmware Nintendo Switch

SGX Bomb Architecture mGx '

Spectre

—
P —

Timing Side = MicroArchitecture
Channels Meltdown

Physical CLKScrew
Rowhammer

DPA

The loT security problem

H o][<TTe
= OS + Network
—

DataCenter

Firmware Nintendo Switch

SGX Bomb Architecture mGx '

Spectre

—
P —

Timing Side = MicroArchitecture
Channels Meltdown

Physical CLKScrew
Rowhammer

DPA

The loT security problem

Apps Trusting user data

Heartbleed
caryiee OS + Network
—>

DataCenter

Firmware Nintendo Switch

SGX Bomb Architecture mGx '

Spectre

Timing Side = MicroArchitecture
Channels Meltdown

—
4—

Physical CLKScrew
Rowhammer

DPA

The loT security problem

APPS Trusting user data Policies

—> —>
Firmware Nintendo Switch DataCenter
SGXBomb | Architecture wmGx h h

— _ _ _ Spectre
Timing Side MicroArchitecture
Channels Meltdown

Physical CLKScrew Physical
Rowhammer

DPA

MicroArchitecture

The loT security problem

APPS Trusting user data Policies

Heartbleed
%% 0S8 + Network OS + Network
— -

Spectre

MicroArchitecture MicroArchitecture

Timing Side = MicroArchitecture
Channels Meltdown

Physical CLKScrew Physical Physical
Rowhammer

DPA

The loT security problem

Heartbleed
%% 0S8 + Network OS + Network
— -

Firmware Nintendo Switch Firmware
SGX Bomb Architecture pcx ‘ Architecture
— _ _ _ Spectre : : : :
Timing Side ~ MicroArchitecture Mi~roArchitectu. e MicroArchitecture
Channels Meltdown
Physical CLKScrew Physic Physical
Rowhammer

DPA

The loT security problem

APPS Trusting user data Kubernetes
=z
—

q TEE
SGX Bomb Architecture pcx ‘ Architecture h Architecture
— _ _ _ Spectre : : : ‘
Timing Side | MjcroArchitecture Mi~roArchitectu.e MicroArc .tecture
Channels Meltdown
Physical CLKScrew Physic Ph .ical
Rowhammer

DPA

The loT security problem

Kupernetes

APPS Trusting user data Policies

OS

Heartbleed
OS + Network OS + Network BGP Poisoning
Qualcomm T2 TEE —- s
: [SSL Certificate _
Firmware Nintendo Switch FiIrmware Attack FiIrmwe
SGX Bomb Architecture mcx ‘ Architecture Architecture

— _ _ _ Spectre
Timing Side MicroArchitecture
Channels Meltdown

DNS Spoofing

MicroArc .tecture

Mi~roArchitectu. e

Physical CLKScrew
Rowhammer

DPA

Reasoning about software and hardware

Programming Exploit Formal
Detection Verification
Reverse
Engineering Bug
Finding
Simulation Automatic
Fuzz Testing Test

Glitching Generation

DPA

4 © 2017 Arm Limited

Current status of ARM specifications

- Formal specifications of A, R and M-class processor classes exist
- Integrated into ARM’s official processor specifications

- Maintained by ARM’s architecture team

- Used by multiple teams within ARM

- Formal validation of ARM processors using Bounded Model Checking

- Development of test suites
- Designing architecture extensions

- Publicly released in machine readable form

5 © 2017 Arm Limited

Overview

1. Reasoning about programs

2. ARM’s formal processor specifications
e Three experiences
e Lessons learned
e (Work in progress)

3. Conclusions

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016
“End to End Verification of ARM processors with ISA Formal,” CAV 2016

“Who guards the guards? Formal Validation of ARM v8-M Specifications,” OOPSLA 2017
6 ©2017 Arm Limitec https://alastairreid.github.io/papers

arm

l l l l l l l l

“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016

{ l l l l l l l

Creating trustworthy
specifications

© 2017 Arm Limited

l l l l l l l 4

Unstructured English Prose (A-class spec)

Concurrent modification and execution of instructions

The ARMVS architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior
that can be achieved by executing any sequence of instructions that can be executed from the same Exception level,
except where each of the instruction before modification and the instruction after modification 1s one of a B, BL, BRK,
HVC, ISB, NOP, SMC, or SVC instruction.

For the B, BL, BRK, HVC, ISB, NOP, SMC, and SVC instructions the architecture guarantees that, after modification of the
instruction, behavior 1s consistent with execution of either:

. The nstruction originally fetched.
. A fetch of the modified instruction.

[f one thread of execution changes a conditional branch instruction, such as B or BL, to another conditional instruction
and the change affects both the condition field and the branch target, execution of the changed instruction by another
thread of execution before the change 1s synchronized can lead to either:

. The old condition being associated with the new target address.
. The new condition being associated with the old target address.

These possibilities apply regardless of whether the condition, either before or after the change to the branch
instruction, 1s the always condition.

8 © 2017 Arm Limited

Semi-structured English prose (M-class spec)

RriC Exit from lockup 1s by any of the following:
- A Cold reset.
o A Warm reset.

. Entry to Debug state.

. Preemption by a higher priority exception.
Rvanw Entry to lockup from an exception causes:
. Any Fault Status Registers associated with the exception to be updated.
. No update to the exception state, pending or active.
. The PC to be set to OxEFFFFFFE.
. EPSR.IT to be become UNKNOWN.

In addition, HFSR.FORCED 1s not set to 1.

9 © 2017 Arm Limited

Tables - semistructured, not machine readable

Table B2-1 Encoding of the DMB and DSB <option> parameter

Accesses Shareability domain

5:::3 e c::,:et:‘e Full system Outer Shareable Inner Shareable Non-shareable
Reads and writes Reads and writes SY OSH ISH NSH

Writes Writes ST OSHST ISHST NSHST

Reads Reads and writes LD OSHLD ISHLD NSHLD

10 © 2017 Arm Limited

Registers - structured, machine-readable

31 30 29 28 27 26 8 76 54 3 2 10

HI

c—

N, bit [31]

7. bit [30]

Lo
DZC

OFC
UFC
IXC
RESO
IDC

Negative condition flag for AArch32 floating-point comparison operations. AArch64 tloating-point
comparisons set the PSTATE.N flag instead.

Zero condition flag for AArch32 floating-point comparison operations. AArch64 floating-point
comparisons set the PSTATE.Z flag instead.

Pseudocode

ADC{S}<C> <Rd>,<Rn>,<Rm>{,<shift>}
3130202827 262524 23 2221 2019181716 15 14 13 121110 9 8 7 6 5 4 3 2

"ot Joo[oJo 1o [5] me | W [s [om[o] w

if Rd == *1111" && S = ‘1" then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘17);
(shift_t, shift_n) = DecodeImmShift(type, imm5);

if ConditionPassed() then
EncodingSpecificOperations():
shifted = Shift(R[m], shift_t, shift_n, APSR.();
(result, carry, overflow) - AddwithCarry(Rin], shifted, APSR.(C)
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result): // setflags 15 always FALSE here
else
R[d] = result:
1f setflags then
APSR.N = result<3ils;

APSR.Z = IsZeroBit(result):
APSR.C = carry:

APSR.V = overflow;

12 © 2017 Arm Limited

Pseudocode

Type Inference

ADC{S}<C> <Rd>,<Rn>,<Rm>{,<shift>}
31302028 27 26 2524 23 2221 2019 18 17 16 IS 14 13 121110 9 B8 7 6 5 4 3 2 Unbounded Integers

"ot JooloJo 1o [5] me | W [s [om[o] wn

1T Rd == "1111" &8 S = ‘1" then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n - UInt(Rn); m=T m—SseeEac - '1"):
(shift_t, shift_n) - DecodeImmShift(type, imm5); Bit Vectors

Enumerations

1T ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.():
(result, carry, overfiow) - AddwithCarry(R[n], shifted, APSR.(C)
1if d == 15 then // Can only occur for ARM encodinc

Indentation-based Syntax

ALUWritePC(result); // setflags 1S always E- 5re Dependent Types
else

Rld] = result;

1t se 35 Then Imperative

~APSR.N = result<3ls:

APSR.Z = IsZeroBit(result); <
APSR.C - carry; Exceptions

APSR.V = overflow;

12 © 2017 Arm Limited

arm

Status at the start

- No tools (parser, type checker)

- Incomplete (around 15% missing)
- “Specity by comment”
- Many trivial errors (that confuse tools but not humans)

- Unexecuted, untested

- Senior architects believed that an executable spec was

- Impossible

- Not useful

- Less readable
- Less correct

13 © 2017 Arm Limited

Architectural Conformance Suite

Processor architectural compliance sign-oft

Large
e v8-A 32,000 test programs, billions of instructions

e v8-M 3,500 test programs, > 250 million instructions

Thorough

e Tests dark corners of specification

14 © 2017 Arm Limited

Progress in testing Arm specification

- Does not parse, does not typecheck
- Can’t get out of reset

- - Can’t execute first instruction

- Can't execute first 100 instructions

o0

- Passes 90% of tests

0 - Passes 99% of tests

© 2017 Arm Limited

Measuring architecture coverage of tests

Untested: op1*op2 == -3.0, FPCR.RND=-Inf

bits(N) FPRSqrtStepFused(bits(N) opl, bits(N) op2)
assert N IN {32. 64}
bits(N) result;
opl = FPNeg(opl). // per FMSUB/FMLS
(typel.signl valuel) = FPUnpack(opl. FPCR):
(type.sign2. value) = FPUnpack(op2. FPCR):
(done.result) = FPProcessNaNs(typel. tvpel, opl, op2. FPCR):
if !done then
infl = (typel == FPType_Infimty):
inf2 = (type2 == FPType_Infimty):
zerol = (typel == FPTvpe Zero):
zero2 = (type2 == FPTvype Zero):
if (infl && zero2) || (zerol && inf2) then
result = FPOnePomntFive('0'):
elstf infl || mf2 then
result = FPInfimtyv(signl EOR sign2. N):
else
// Fully fused multiply-add and halve
result value = (3.0 + (valuel * value2)) / 2.0;
if result value == 0.0 then
// S1gn of exact zero result depends on rounding mode
sign = if FPCRRounding() == FPRounding NEGINF then '1' else '0';
result = FPZero(sign, N):
else
result = FPRound(result value, FPCRRounding()):
return result;

16 © 2017 Arm Limited

Creating a Virtuous Cycle

Lessons learned about engineering a specification

Specifications contain bugs

Huge value in being able to run existing test suites

- Need to balance against benefits of non-executable specs

Find ways to provide direct benefit to other users of spec

- They will do some of the testing/debugging for you

- They will support getting your changes/spec adopted as master spec

- Creates Virtuous Cycle

18 © 2017 Arm Limited

l l l 4 l l 4 l l

“End to End Verification of ARM processors with ISA Formal,” CAV 2016
“Who guards the guards? Formal Validation of ARM v8-M Specifications” OOPSLA

l 4 l 4 4 0 l

Formal validation
of processors

l i l l

and of specifications

1

© 2017 Arm Limited

l l 4 l 4 l l i l

Checking an instruction

ADD

Checking an instruction

CMP LDR| ADD | STR BNE

Context

Formal framework (deterministic specs)

Implementation
Specification

Bounded model checker

21 © 2017 Arm Limited

Arm CPUs verified with ISA-Formal

A-class R-class M-class
Cortex-A53 Cortex-R52 Cortex-M4
Cortex-A32 Next generation Cortex-M7/
Cortex-A35 Cortex-M33
Cortex-A55 Next generation

Next generation Cambridge Projects

Rolling out globally to other design centres

Sophia, France - Cortex-A75 (partial)
Austin, USA - TBA
Chandler, USA - TBA

22 © 2017 Arm Limited

Lessons Learned from validating processors

Very effective way to find bugs in implementations

Formally validating implementation is effective at finding bugs in spec
- Try to find most of the bugs in your spec before you start

Huge value in being able to use spec to validate implementations

- Helps get formal specification adopted as part of official spec

23 © 2017 Arm Limited

l l l l l l l l

“Who guards the guards? Formal Validation of ARM v8-M Specifications™ OOPSLA 2017

Formal validation
of specifications

© 2017 Arm Limited

l l l l l l l 4

One Specification to rule them all?

Compliance Tests

Architecture Spec

Processors

Reference Simulator

25 © 2017 Arm Limited

Rule JRJC
Exit from lockup 1s by any of the following:

e A Cold reset.
e A Warm reset.

* Entry to Debug state.
* Preemption by a higher priority processor exception.

Rule R

State Change X 1s by any of the following;:
e tvent A
e Event B

e State Change C
e tvent D

Rule R

State Change X 1s by any of the following:
e tvent A
e Event B

e State Change C
e tvent D

RuleR: X=>AvBvCvD

State Change Exit from lockup Fell(LockedUp)

Fvent A Cold reset Called(TakeColdReset)
Fvent A Warm reset Called(TakeReset)
State Change Entry to Debug state Rose(Halted)

Fvent Preemption by a higher Called(ExceptionEntry)

priority processor
exception

27 © 2017 Arm Limited

“Eyeball Closeness”

Rule JRJC
Exit from lockup 1s by any of the following:

e A Cold reset.
e A Warm reset.

* Entry to Debug state.
* Preemption by a higher priority processor exception.

Fell(LockedUp) - Called(TakeColdReset)
v Called(TakeReset)

v Rose(Halted)
v Called(ExceptionEntry)

28 © 2017 Arm Limited

Rule VGNW
Entry to lockup from an exception causes

* Any Fault Status Registers associated with the exception
to be updated.

Out of date «(No update to the exception state, pending or active.
Misleading «(The PC to be set to OXEFFFFFFE.

Untestable «(EPSR.IT to become UNKNOWN.
Ambiguous (In addition, HFSR.FORCED is not set to 1.

29 © 2017 Arm Limited

~10,000 lines ~1,000,000 lines

Co nvert

Counterexample

30 © 2017 Arm Limited

Lessons Learned from validating specifications

Redundancy essential for detecting errors

- Detected subtle bugs in security, exceptions, debug, ...

- Found bugs in English prose

Need set of ‘orthogonal’ properties

- Invariants, Security properties, Reachability properties, etc.

Eyeball closeness

Needed to translate specification to another language to let us use other tools

31 © 2017 Arm Limited

arm

Work In progress:

 Secu r|ty of architecture
specifications

© 2017 Arm Limited

Validating security of processor architectures

Scope
- Compositional Attacks
- Hardware-based Security Enforcement

- Confidentiality, Integrity, Availability (and more?)

Challenges
- Cyclic dependencies between HSES

- Microarchitectural storage/timing channels

33 © 2017 Arm Limited

Verilog
Model
Checker

ARM Processor [—m8 ——— — >
T |
ARM Specification $>
to Verilog

Tra nslate
to SIVIT

v8-M Spec | +| Properties

34 © 2017 Arm Limited

Engineering Formal Specifications of Real World Artifacts

Plan for adoption into official specs

Apply standard engineering practices
- Test, review, Cl, ... k 4
- Understand approximations and limitations

Build a virtuous cycle < >
- Look for early adopters
- What is “killer app” of your spec? % U 'Q
- Ensure specifications have many uses

(Don’t write spec in Coq/HOL/ACL2 /...

35 © 2017 Arm Limited

Public release of machine readable Arm specification

Enable formal verification of software and tools
Releases: v8.2 (4/2017), v8.3 (10/2017), v8.4 (6/2018), v8.5 (9/2018)
Working with Cambridge University REMS group to convert to SAIL

Backends for HOL, OCaml, Memory model, (hopefully Coq too)

Specification: https://developer.arm.com/products/architecture/a-profile
exploration-tools

Tools: https://github.com/alastairreid/mra tools

(See also: https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat)

Talk to me about how | can help you use it

Thank Youl @alastair d reid

Dankel
arm

Merci!
Siad S
T 157
N —
)P e D!
“Trustworthy Specifications of the ARM v8-A and v8-M architecture,” FMCAD 2016

135S |
G raClas: “End to End Verification of ARM processors with ISA Formal,” CAV 2016
KI |tOS | “Who guards the guards? Formal Validation of ARM v8-M Specifications,” OOPSLA 2017

© 2017 Arm Limited

Formal verification is breadth first

1dle _AbD

A &DR

alastair.rei d@arm.com @alastair d reid

Formal verification is breadth first

BNE STR

dle —222

CMP XDR

alastair.rei d@arm.com @alastair d reid

Formal verification is breadth first

alastair.rei d@arm.com @alastair d reid 38

Formal verification is breadth first

=
¢

alastair.rei d@arm.com @alastair d reid

Formal veri areadth first

alastair.rei d@arm.com @alastair d reid

alastair.reid@arm.com @alastairs

Testing is depth-first

|dle

alastair.rei d@arm.com @alastair d reid

Testing is depth-first

|dle

alastair.rei d@arm.com @alastair d reid

Testing is depth-first

W\ dle
e

alastair.rei d@arm.com @alastair d reid

Testing is depth-first

W\ dle
e

alastair.reid@arm.com @alastair_d_reid \

Testing is depth-first

\/

\/\/‘\ dle
e

alastair.reid@arm.com @alastair_d_reid \

lesting is chepth-ﬁ rst

7

\/\/‘\ dle
e

alastair.reid@arm.com @alastair_d_reid \

. Testing is cﬂEEth-ﬁ st

alastair.reid@arm.com @alastair_d_reid \

lesting is c}]epth-ﬁ st

7

alastair.reid@arm.com @alastair_d_reid \

Mixed Mode Verification

e /;TR

1dle _ADD

w KDR

alastair.rei d@arm.com @alastair d reid

Mixed Mode Verification

e /;TR

1dle _ADD

w KDR

alastair.rei d@arm.com @alastair d reid

Mixed Mode Verification

alastair.rei d@arm.com @alastair d reid

Mixed Mode Verification

alastair.rei d@arm.com @alastair d reid

o Mixed Mode Verification

4—_

alastair.rei d@arm.com @alastair d reid

ixed Mode\Veriﬁ cation

4—_

alastair.reid@arm.com @alastair_d_reid \

ixed Mode\Veriﬁ cation

4—_

alastair.reid@arm.com @alastair_d_reid \\

ixed Mode\Veriﬁ cation

4—_

alastair.reid@arm.com @alastair_d_reid \\

4___

alastair.rei d@arm.com @alastair d reid

The Arm trademarks featured in this
presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. All rights
reserved. All other marks featured may be
trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2017 Arm Limited

