Backwards Compatible

Bettem-up formalization
of the ARM architecture

Alastair Reid
R&D
ARM Ltd
February 2012

®
The Architecture for the Digital World® ARM

What ARM does

ARM Holdings is the world's leading semiconductor intellectual

property (IP) supplier and as such is at the heart of the
development of digital electronic products. Headquartered in
Cambridge UK and employing over 2,000 people, ARM has
offices around the world, including design centers in Taiwan,
France, India, Sweden, and the US.

Company Highlights

The world’s leading semiconductor IP company

Founded in 1990

Over 20 billion ARM based chips shipped to date

800 processor licenses sold to more than 250 companies

Royalties received on all ARM-based chips

Gaining market share in long-term secular growth markets

ARM revenues typically grow faster than overall semiconductor industry revenues

l The Architecture for the Digital World® ARM®

Outline

= Challenges in creating a formal ISA specification
= 2 “Technical” issues

= 2 “Social/Business” issues

= Bottom-up formalization
= Process
= Sketch(es) of semantics

= Work in progress

®
The Architecture for the Digital World® ARM

Challenge #1: Pick a language

Many choices

= Custom [ISA specification language
= E.g., LISA (Ishtiaq)

= General purpose formal specification language
= E.g., HOL (Fox), Coqg (Chong & Ishtiaq)

= Golden Verilog reference
= E.g., ARM CPU Validation teams

= Frontend for multiple specification languages
= E.g.,, LEM (Owens et al.)

| » ‘ ®
‘;k_ ’ The Architecture for the Digital World® ARM

#2: ISA Spec is deliberately broad

The ARM architecture supports implementations across a wide range of performance points. The architectural
simplicity of ARM processors leads to very small implementations. and small implementations mean devices can
have very low power consumption. Implementation size, performance, and very low power consumption are key
attributes of the ARM architecture.

UNPREDICTABLE
Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or lower level of privilege using instructions that are not UNPREDICTABLE.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment. instruction to instruction,
and implementation to implementation. An UNKNOWN value must not be a security hole. UNKNOWN values must not
be documented or promoted as having a defined value or effect.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined. but must be defined and documented by individual
implementations.

UNDEFINED Indicates an instruction that generates an Undefined Instruction exception.

®
The Architecture for the Digital World® ARM

#3: A lot of history

= 1984 Simulator (BBC BASIC)
= 26 April 1985: First Silicon |
= 1990: ARM Ltd founded S

= Architecture Reference Manual
= 1996: v4, 328 pages, book
= 2000: v5, 816 pages, book

“{ ARCHITECTURE

= 2005: v6, 1138 pages, PDF NI
= 2007: v7, 2158 pages, PDF i, L
= 2011: v7, 2668 pages+supplements, PDF ’

= 2011: ARM Architecture version 8 announced

®
The Architecture for the Digital World® ARM

#3: And a lot of processors

ARM Processors Gortex Processors COrtex Processors
Cortex-A1l15

ARM7 Cortex-M0

)
The Architecture for the Digital World® ARM

#4: What is formal spec used for?

* Verification

REFERENCE

£ "{ ARCHITECTURE Dev. * Verify as, Id
e MANUAL Tools * Verify cc

 Microkernel
verification

« OS verification
« App verification

®
The Architecture for the Digital VWorld® ARM

Programs

#4: What ARM uses ISA spec for

Design
Licensing
Validation

» Test suites
» Test tools

#%{ ARCHITECTURE * Design
e REFERENCE))
MANUAL » Validation

R

Asm/dasm/Id
Compiler
Debugger
Validation

®
The Architecture for the Digital VWorld® ARM

Requirements

= Can be used as a formal specification?
= Range of languages to choose from

= Broad enough to express full range of legal behaviour?
= Captures deliberate looseness of specification

= Equivalent to existing spec?
= Doesn't rule out existing or legitimate implementations
= Does rule in unacceptable future implementations

= Readable by all the teams inside and outside ARM who need
a spec?
= Hardware engineers, compiler engineers, OS writers, ...

®
The Architecture for the Digital World® ARM

Bottom-up formalization

= Start with existing semi-formal specification
= Change (slightly) to make it a formal spec
= Test against existing CPUs, test suites, etc.

Prototypes generated from current spec+semantics

= Automatically generate code/data/specs

Traditional formal spec (e.g., in Cogq/HOL/LEM/...)
Reference Verilog

Simulators

Instrumented interpreters

Assembler, disassembler, ...

Random Instruction Sequence tester

Tables of system registers (for debugger)

®
The Architecture for the Digital World® ARM

The ARM ARM

NG
‘4 ARCHITECTURE
: REFERENCE
MANUAL

SECOND Evixos

'.,

lllll

®
The Architecture for the Digital World® ARM

ARMvS pseudocode

A412 ADC
3l 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0O 0|rjo 1 0 1|8 Rn Rd shifter_operand

ADC (Add with Carry) adds two values and the Carry flag. The first value comes from a register. The second
value can be cither an immediate value or a value from a register, and can be shifted before the addition.

ADC can optionally update the condition code flags, based on the result.

Syntax
ADC{<cond>}{S} <Rd», <Rn», <shifter_operand»

Operation

if ConditionPassed(cond) then

Rd = Rn + shifrer_operand + C Flag

ifS = 1and Rd = R15 then
1f CurrentModeHasSPSR() then

(PSR - SPSR

else UNPREDICTABLE

else if S == 1 then
N Flag - Rd[31]
Z Flag = if Rd = @ then 1 else &
C Flag = CarryFrom(Rn + shiftrer_operand + C Flag)
¥V Flag = OverflowfFrom(Rn + shifter_operand + C Flag)

= " ®
1 ; The Architecture for the Digital World® AR I

ARMv7 specification

Encoding A1 ARMv4* ARMvVST*, ARMv6*, ARMv7
ADC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

3130292827 262524232221 2019 181716151413 121110 9 8 7 6 5 4 3 2 1 0
cond 0 0j010 1T 0 1]|S Rn Rd imm5 type |0 Rm

if Rd == ‘1111" & S == ‘1’ then SEE SUBS PC, LR and related instructions;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == ‘1");
(shift_t, shift_n) - DecodeImmShift(type, imm5);

Assembler syntax
ADC{S}<C><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted - Shift(R[m], shift_t, shift_n, APSR.(C);
(result, carry, overflow) - AddwithCarry(R[n], shifted, APSR.C);
if d == 15 then // Can only occur for ARM encoding
ALUWritePC(result); // setflags is always FALSE here
glse
R[d] = result;
if setflags then
APSR.N = result<3ls;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V - overflow;

- .
‘ ' The Architecture for the Digital World® ARM

ARMv7 support functions

(SRType, integer) DecodeImmShift(bits(2) type, bits(5) immS).<5;

Bounded Precision Ints
case type of

when ‘00’

shift_t - SRType_LSL; shift_n = UInt(immS);
when ‘01’ ..
shift_t - SRType_LSR; shift_n - if imm5 -- ‘00000’ then 32 else UInt(imms): Unbounded Precision Ints

when ‘10’ _ . _ (and Rationals)
shift_t = SRType_ASR; shift_n = if imm5 -- ‘00000’ then 32 else UInt(imm5);
when ‘11’
if immS -- ‘00000 then
shift_t - SRType_RRX; shift_n - 1; € Type Inference
else

shift_t - SRType_ROR; _shift_n - UInt(imm5);
~

return (shift_t, shift_n);

Enumerations
e

(bits(N), bit) Shift_C(bits(N) value, SRType type, integer amount, DTT Carry—HRi—

assert !(type —- SRType_R — Indentation-based Syntax

if amount -- @ then
(result, carry_out) - (value, carry_in);
else
case type of
when SRType_LSL
(result, carry_out) = LSL_C(value,
when SRType_LSR
(result, carry_out) = LSR_C(value, amount);
when SRType_ASR
(result, carry_out) = ASR_C(value, amount);
when SRType_ROR
(result, carry_out) = ROR_C(value, amount);
when SRType_RRX .
(result, carry_out) - RRX_C(value, carry_in); Exceptions

Dependent Types

amount);

Imperative

return (result, carry_out);

9 ®
‘ } The Architecture for the Digital World® ARM

Revised Goal

Evolve existing specification into formal specification

= Wit
= Wit
= Wit
= Wit

N a precise (but non-deterministic) meaning
nout excluding existing interpretations
nout losing readability

nout making too many changes

®
The Architecture for the Digital World® ARM

Formalizing Existing Specification

1. Write a parser

=» Fix syntax errors in specification

=» Fix specification of language syntax
2. Write a typechecker

=» Fix typing errors in specification

=» Fix specification of language typesystem
3. Write a compiler/interpreter

=» Fix semantic errors in specification
=» Fix specification of language semantics

®
The Architecture for the Digital World® ARM

Highly iterative (and social) process

q Fix

Fix Tool ARMARM

Understand
Users

Upstream
Fixes

Convince
Gatekeepers

®
The Architecture for the Digital World® ARM

Iterative process

Pseudocod
> Test
Semantlcs

®
The Architecture for the Digital World® ARM

Iterative process

Pseudocode
> Prediction
Semantics

®
The Architecture for the Digital World® ARM

Initial version of semantics

expr: State > State x Value, + Exception

stmt: State > State x Exception

®
The Architecture for the Digital World® ARM

Overly narrow specification

Upper bound

Sequential Semantics

\

Lower bound

Note: Don’t yet have a definitive semantics — this is a sketch of one direction it might go.

®
The Architecture for the Digital World® ARM

Limitations of pseudocode

“The pseudocode descriptions of instructions have a number of
limitations.

These are mainly due to the fact that, for clarity and brevity, the
pseudocode is a sequential and mostly deterministic
language.

These limitations include: ...~

®
The Architecture for the Digital World® ARM

Limitation 1a: Memory access order

Pseudocode does not describe the ordering requirements when an instruction generates multiple memory
accesses, except 1n the case of SWP and SWPB instructions where the two accesses are to the same memory
location. For a description of the ordering requirements on memory accesses see Memory access order on

Memli] = a; Mem][j] = b;
Mem|j] = b; Mem[i] = a,

Note: i==j case discussed later

4 1 ®
‘ f The Architecture for the Digital World® ARM

Limitation 1b: Register access order

A processor exception can be taken durning execution of the pseudocode for an instruction. either explicitly
as a result of the execution of a pseudocode function such as DataAbort(). or implicitly. for example if an
interrupt 1s taken during execution of an LDM instruction. If this happens. the pseudocode does not describe
the extent to which the normal behavior of the instruction occurs. To determune that, see the descriptions of
the processor exceptions in Exception handling on page B1-1164.

RI[i] = a; R[] = b;

R[] = b; R[i] = a;

Note: i==j case discussed later

®
The Architecture for the Digital World® ARM

Pseudocode is not entirely sequential

= Language designed by and for hardware engineers
= Hardware engineers ‘think parallel’

= | ogic cones

S
©

c Output1
=k —

» =

- ©

c Output3

— =

= (7))

ge] w

c Output2
=k

(7]

N

S

©

c Output3
=k

(7))

w

®
The Architecture for the Digital World® ARM

")

Revised semantics

= Each value is tagged with its logic cone
= |.e., global variables that the value depends on

= Well defined if

= At most one value assigned to each global variable
= No value depends on a global variable that is assigned to

—

R[] =a; R[] =b;

RUT=a ROT=00=7 g = . R[j] = 1; -

| » ‘ ®
M ’ The Architecture for the Digital World® ARM

Revised semantics

= Each value is tagged with its logic cone
= |.e., global variables that the value depends on

= Well defined if

= At most one value assigned to each global variable
= No value depends on a global variable that is assigned to

—

Mem[i] = a; Mem[j] = b ifi5
Mem([i] = a; Mem[j] = b; = d

Meml[i] = L; if i==]

——

®
The Architecture for the Digital World® ARM

Revised semantics

= Each value is tagged with its logic cone
= |.e., global variables that the value depends on

= Well defined if

= At most one value assigned to each global variable
= No value depends on a global variable that is assigned to

Mem[i] = a; i=Mem[j; ifi=j
Mem(i] = a; i = Mem[j]= -

UNPREDICTABLE; if i==]

®
The Architecture for the Digital World® ARM

Revised version of semantics

CState = Var > Cone[Value]

expr: State > CState x Cone[Value] x Exception
stmt: State &> CState x Exception

instr: State - State x Exception

Note: expression and statement composition left as an exercise...

S i The Architecture for the Digital World® ARM®

Iterative process

Pseudocode
> Prediction
Semantics

®
The Architecture for the Digital World® ARM

Testing this semantics #1
LDM r1!, {r1,r2}

®
The Architecture for the Digital World® ARM

Testing this semantics #1
LDM Rn!, {registers}

address = R[n] - 4*BitCount(registers) + 4;
for i = 0 to 14
if registers<i> == 'l' then
R[i] = Mem[address,h4];

address = address + 4;

if registers<15> == 'l' then LoadWritePC (MemA|[address,h 4])

if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);

(jEiEﬁ%%%E:&& registers<n> == 'l' then R[n] = bits(32)i§§%§§§§z:>

®
The Architecture for the Digital World® ARM

Testing this semantics #2
STR RO,[RO]!

®
The Architecture for the Digital VWorld® ARM

Testing this semantics #2
STR Rn,[Rm,offset]!

offset = Shift(R[m], shift t, shift n, APSR.C);
offset addr = if add then (R[n] + offset)
else (R[n] - offset);
address = if index then offset addr else R[n];
if t == 15 then data = PCStoreValue() ;
else data = R[t];
MemU |[address,4] = data:’

@ack then R[n] = offset_add)

®
The Architecture for the Digital World® ARM

Iterative process

Pseudocode
> Prediction
Semantics

®
The Architecture for the Digital World® ARM

Summary of semantics

= ‘Parallel’ semantics of sequential language
= Based on data dependencies

= Multiple writes to same piece of global state
UNKNOWN/UNPREDICTABLE

= |[terative development process
= Continually test against existing codebase and architecture team
=» Change spec
=» Change semantics
= About to start testing against test suites and CPUs

®
The Architecture for the Digital World® ARM

Generating tools from ARMARM

= Translate to C (Simulator)
= ARMv6-M (Microcontroller)
= ARMv7-R (Real Time, Protected Memory)
\RMyZ-A (Applications. Virtual M 3
= ARMv8{64-bit)
= Translate to Verilog (Validation Reference)
= ARMv6-M (Microcontroller)

= Generate Assembler/Disassembler
= ARMvS (64-bit)

Current focus: testing existing tools and processors
(Validating our approach in the process)

®
s N = The Architecture for the Digital World® AR I

Conclusion/Status

= Evolving existing semi-formal spec into a formal spec
= Avoid large discontinuities
= Focus on acceptability to various communities

= Focus until now has been on syntax+typesystem
= |terative process: test on codebase + users

= Finding semantics will take time and experimentation
= Current semantics ‘correct’ but excludes many legal implementations
= |terative process: test on ARM validation suites + CPUs + users

= Some initial experience of building tools
= (but no formal specification yet)

®
3 N = The Architecture for the Digital World® AR I

®
The Architecture for the Digital World® ARM

ARMVvV7 specification language

= Syntax

= Algol-like

= |ndentation based
= Types

= Simple type inference
= Dependent types (integer additive expressions)
= First order, bits(N), integer, real (== rational), enumerations, records

= Semantics

= |mperative, mostly sequential
= Exceptions: UNDEFINED, etc.
= Supplemented by natural language descriptions

®
The Architecture for the Digital World® ARM

