
1

Bottom-up formalization
of the ARM architecture

Alastair Reid
R&D

ARM Ltd
February 2012

Backwards Compatible

2

What ARM does
ARM Holdings is the world's leading semiconductor intellectual

property (IP) supplier and as such is at the heart of the
development of digital electronic products. Headquartered in
Cambridge UK and employing over 2,000 people, ARM has
offices around the world, including design centers in Taiwan,
France, India, Sweden, and the US.

Company Highlights
§ The world’s leading semiconductor IP company
§ Founded in 1990
§ Over 20 billion ARM based chips shipped to date
§ 800 processor licenses sold to more than 250 companies
§ Royalties received on all ARM-based chips
§ Gaining market share in long-term secular growth markets
§ ARM revenues typically grow faster than overall semiconductor industry revenues

3

Outline
§ Challenges in creating a formal ISA specification

§ 2 “Technical” issues
§ 2 “Social/Business” issues

§ Bottom-up formalization
§ Process
§ Sketch(es) of semantics

§ Work in progress

4

Challenge #1: Pick a language
Many choices
§ Custom ISA specification language

§ E.g., LISA (Ishtiaq)

§ General purpose formal specification language
§ E.g., HOL (Fox), Coq (Chong & Ishtiaq)

§ Golden Verilog reference
§ E.g., ARM CPU Validation teams

§ Frontend for multiple specification languages
§ E.g., LEM (Owens et al.)

5

#2: ISA Spec is deliberately broad

6

#3: A lot of history
§ 1984: Simulator (BBC BASIC)
§ 26 April 1985: First Silicon
§ 1990: ARM Ltd founded
§ Architecture Reference Manual

§ 1996: v4, 328 pages, book
§ 2000: v5, 816 pages, book
§ 2005: v6, 1138 pages, PDF
§ 2007: v7, 2158 pages, PDF
§ 2011: v7, 2668 pages+supplements, PDF

§ 2011: ARM Architecture version 8 announced

7

#3: And a lot of processors

8

#4: What is formal spec used for?

CPU • Verification

Dev.
Tools

• Verify as, ld
• Verify cc

Programs

• Microkernel
verification

• OS verification
• App verification

9

#4: What ARM uses ISA spec for

CPU

• Design
• Licensing
• Validation

• Test suites
• Test tools

Models • Design
• Validation

Dev
Tools

• Asm/dasm/ld
• Compiler
• Debugger
• Validation

10

Requirements
§ Can be used as a formal specification?

§ Range of languages to choose from

§ Broad enough to express full range of legal behaviour?
§ Captures deliberate looseness of specification

§ Equivalent to existing spec?
§ Doesn’t rule out existing or legitimate implementations
§ Does rule in unacceptable future implementations

§ Readable by all the teams inside and outside ARM who need
a spec?
§ Hardware engineers, compiler engineers, OS writers, ...

11

Bottom-up formalization
§ Start with existing semi-formal specification
§ Change (slightly) to make it a formal spec
§ Test against existing CPUs, test suites, etc.

§ Prototypes generated from current spec+semantics

§ Automatically generate code/data/specs
§ Traditional formal spec (e.g., in Coq/HOL/LEM/...)
§ Reference Verilog
§ Simulators
§ Instrumented interpreters
§ Assembler, disassembler, ...
§ Random Instruction Sequence tester
§ Tables of system registers (for debugger)

12

The ARM ARM

13

ARMv5 pseudocode

14

ARMv7 specification

15

ARMv7 support functions

Type Inference

Dependent Types

Enumerations

Unbounded Precision Ints
(and Rationals)

Bounded Precision Ints

Indentation-based Syntax

Imperative

Exceptions

16

Revised Goal
Evolve existing specification into formal specification
§ With a precise (but non-deterministic) meaning
§ Without excluding existing interpretations
§ Without losing readability
§ Without making too many changes

17

Formalizing Existing Specification
1. Write a parser

è Fix syntax errors in specification
è Fix specification of language syntax

2. Write a typechecker
è Fix typing errors in specification
è Fix specification of language typesystem

3. Write a compiler/interpreter
è Fix semantic errors in specification
è Fix specification of language semantics

18

Highly iterative (and social) process

Fix
ARMARM

Upstream
Fixes

Fix Tool
Solitary Understand

Users

Convince
Gatekeepers

19

Iterative process

Semantics
Test

Pseudocode

20

Iterative process

Semantics
Prediction

Pseudocode

21

Initial version of semantics

expr: State à State x Value
┴

+ Exception

stmt: State à State x Exception

22

Overly narrow specification

Upper bound

Lower bound

Sequential Semantics

Note: Don’t yet have a definitive semantics – this is a sketch of one direction it might go.

23

Limitations of pseudocode
“The pseudocode descriptions of instructions have a number of

limitations.
These are mainly due to the fact that, for clarity and brevity, the

pseudocode is a sequential and mostly deterministic
language.

These limitations include: ... ”

24

Limitation 1a: Memory access order

Mem[i] = a; Mem[j] = b;

==
Mem[j] = b; Mem[i] = a;

Note: i==j case discussed later

25

Limitation 1b: Register access order

R[i] = a; R[j] = b;

==
R[j] = b; R[i] = a;

Note: i==j case discussed later

26

Pseudocode is not entirely sequential
§ Language designed by and for hardware engineers
§ Hardware engineers ‘think parallel’

§ Logic cones

Inputs1

Output1

Inputs2

Output2

Inputs3

Output3
Inputs3

Output3

27

Revised semantics
§ Each value is tagged with its logic cone

§ i.e., global variables that the value depends on

§ Well defined if
§ At most one value assigned to each global variable
§ No value depends on a global variable that is assigned to

R[i] = ┴; R[j] = ┴; if i==j
R[i] = a; R[j] = b; =

R[i] = a; R[j] = b; if i!=j

28

Revised semantics
§ Each value is tagged with its logic cone

§ i.e., global variables that the value depends on

§ Well defined if
§ At most one value assigned to each global variable
§ No value depends on a global variable that is assigned to

Mem[i] = ┴; if i==j

Mem[i] = a; Mem[j] = b; =

Mem[i] = a; Mem[j] = b; if i!=j

29

Revised semantics
§ Each value is tagged with its logic cone

§ i.e., global variables that the value depends on

§ Well defined if
§ At most one value assigned to each global variable
§ No value depends on a global variable that is assigned to

UNPREDICTABLE; if i==j

Mem[i] = a; i = Mem[j]=

Mem[i] = a; i = Mem[j]; if i!=j

30

Revised version of semantics

expr: State à CState x Cone[Value
┴
] x Exception

stmt: State à CState x Exception

instr: State à State x Exception

CState = Var à Cone[Value
┴
]

Note: expression and statement composition left as an exercise...

31

Iterative process

Semantics
Prediction

Pseudocode

32

Testing this semantics #1
LDM r1!, {r1,r2}

33

Testing this semantics #1
LDM Rn!, {registers}

address = R[n] - 4*BitCount(registers) + 4;

for i = 0 to 14

if registers<i> == '1' then R

R[i] = Mem[address,4];

address = address + 4;

if registers<15> == '1' then LoadWritePC(MemA[address,4]);

if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);

if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

34

Testing this semantics #2
STR R0,[R0]!

35

Testing this semantics #2
STR Rn,[Rm,offset]!

offset = Shift(R[m], shift_t, shift_n, APSR.C);

offset_addr = if add then (R[n] + offset)

else (R[n] - offset);

address = if index then offset_addr else R[n];

if t == 15 then data = PCStoreValue();

else data = R[t];

MemU[address,4] = data;

if wback then R[n] = offset_addr;

36

Iterative process

Semantics
Prediction

Pseudocode

37

Summary of semantics
§ ‘Parallel’ semantics of sequential language

§ Based on data dependencies
§ Multiple writes to same piece of global state

UNKNOWN/UNPREDICTABLE

§ Iterative development process
§ Continually test against existing codebase and architecture team

èChange spec
èChange semantics

§ About to start testing against test suites and CPUs

38

Generating tools from ARMARM
§ Translate to C (Simulator)

§ ARMv6-M (Microcontroller)
§ ARMv7-R (Real Time, Protected Memory)
§ ARMv7-A (Applications, Virtual Memory)
§ ARMv8 (64-bit)

§ Translate to Verilog (Validation Reference)
§ ARMv6-M (Microcontroller)

§ Generate Assembler/Disassembler
§ ARMv8 (64-bit)

Current focus: testing existing tools and processors
(Validating our approach in the process)

39

Conclusion/Status
§ Evolving existing semi-formal spec into a formal spec

§ Avoid large discontinuities
§ Focus on acceptability to various communities

§ Focus until now has been on syntax+typesystem
§ Iterative process: test on codebase + users

§ Finding semantics will take time and experimentation
§ Current semantics ‘correct’ but excludes many legal implementations
§ Iterative process: test on ARM validation suites + CPUs + users

§ Some initial experience of building tools
§ (but no formal specification yet)

40

Fin

41

ARMv7 specification language
§ Syntax

§ Algol-like
§ Indentation based

§ Types
§ Simple type inference
§ Dependent types (integer additive expressions)
§ First order, bits(N), integer, real (== rational), enumerations, records

§ Semantics
§ Imperative, mostly sequential
§ Exceptions: UNDEFINED, etc.
§ Supplemented by natural language descriptions

