How can we formally verify
Rust for Linux?

Alastair Reid

@alastair_d_reid

Google Research

https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

The verification continuum

Testing Fuzzing Bug finding Proving

P
-~

Google Research
https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

Agenda

e \What code to verify?
e \What properties to verify?
e How can we use tools we have today?

e \Vhat needs fixed before this is viable?

Google Research
https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

Spoiler: It is not usable yet

e Tool problems
e | didn’t find bugs
e | didn’t verify anything

e (I am now working on a new, unrelated project)

Google Research
https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

Detailed blog pOSt https://project-oak.github.io/rust-verification-tools/

Aug 24, 2021

Aug 23, 2021

Using KLEE on Rust-for-Linux (part 1)

Aug 22, 2021

The Rust for Linux project is working on adding support for the Rust language to the Linux
kernel with the hope that using Rust will make new code more safe, easier to refactor and
review, and easier to write. (See the RFC for more detail about goals and for the varied
responses of the Linux Kernel community.)

Back in April, | took a look at whether we could use our Rust verification tools on the Rust for Linux
repo to provide further safety. Most of our work is based on the KLEE symbolic execution tool and |
was able to get that to work. For reasons, | did not get to explore this very deeply after that but |
thought it would be useful to describe what | was able to do and some of the questions raised by the
work as a guide to how you might tackle the problem in the future.

| have split this blog into three parts because it was getting quite long. In this part, I'll start by looking
at some key questions around what properties and code we want to check. The second part, will dive
deeply into how to build Rust-for-Linux in a way that you can use KLEE on it. (Many people will want to
skip this part.) And the final part, will return to the questions by creating test harnesses and stubs that
could be used to check the Rust-for-Linux code for bugs.

As with the previous post on using KLEE with CoreUtils, my goal in this post is to help others to use
tools from the formal verification community to check code like this rather than to do that checking
myself. In particular, | will not find any bugs, | will not attempt to provide evidence that this is worth
doing and | will not create a verification system that is ready to integrate into any project. These (and
other limitations listed at the end of the last post) all need to be fixed before | would recommend that
you try to use these tools as part of your regular workflow. But, | hope that this series will give you an

Using KLEE on Rust-for-Linux (part 2)

d model checkers with Linux
eries on using KLEE on the
is second part, digs deeply
tools like KLEE. (Warning: it
in.) The final part will show
scribed in this post are in this

VM bitcode files.

he Rust for Linux

will just focus on building
o symbolically execute the

few of them are a bit slow.
into your shell in the

Using KLEE on Rust-for-Linux (part 3)

inux, we are going to write a simple
device driver written in Rust and

. It's worth repeating that the goal of
to find bugs in it. Instead, my goal is

at verification yourself. You might

by creating better mocks and test
‘erent answers to the questions in the
EE that | described in the second
this branch of my fork of Rust for

rness like this

>, FileState>(registration)?;

Google Research

https://project-oak.github.io/rust-verification-tools/

What code to verify?

Stub layer (C + Rust)

Google Research
https://project-oak.qithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

Legitimate
failure
catch,

cleanup,
rethrow

External

failure
log or
reset

kmalloc failure

hardware
failure

compiler
bug

assert

might_sleep()

array index
error

integer
overflow

Failing
checks
verify

—— Checks that we cannot prove will not falil

~— Checks proved cannot fail

PFOQ rammer ~— Checks that can fail

&

Compiler

|nserted ~— Checks eliminated by compiler
checks

Google Research

local_irq_disable

local_irq_enable
0 hw_local_irq_disable
hw_local_irq_enable @

o Kernel, modules, devices, objects, etc.

2: State machines

e Many state machines in OS

e Check that state m/c changes are allowed

e See Formal verification made easy and fast (pc 2019

Google Research

Diagram: Daniel Bristot de Oliviera et al, “Untangling the Intricacies of Thread Synchronization in the PREEMPT_RT Linux Kernel”, ISORC 2019.

https://youtu.be/5ZPVPkR-aW4

3: System invariants

e Fast systems code has many invariants

e EXxecutable invariants

o assertions on function entry/exit

Google Research
https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

INLunctional correctness

1. Write a formal specittsgtiongef your code
2. Verify code against#t speCMigation

3. Update speg#fcation as code changt

Google Research
https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

Writing verification harnesses
(parameterized tests)

1. Write a test of your code using fixed values
2. Replace fixed values with parameters

a. Random values — fuzzing

b. Symbolic values — formal verification

3. Profit: one test that can be used in two ways

Google Research
https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

A concrete test

#[test]
fn test_fileops2() -> Result<()> {
let registration = &RustSemaphore::init()?. _dev;
let file state = *mk_file state::<Arc<Semaphore>, FileState>(registration)?;

let file = File::make_fake file();

test_write(&file_state, &fij
test read(&file state, &fils
Ok(())

Google Research
https://project-oak.qithub.io/rust-verification-tools/using-propverify/

https://project-oak.github.io/rust-verification-tools/using-propverify/

PropTest

What | want to write...

proptest! {

#[test]

fn test_fileopsA(wlen in ©..=1000usize, rlen in ©..=1000usize) }»> Result<()> {
let registration =

let file state = *mk_file state::<Arc<Semaphore>, FileState>(registration)?;

let file = File::make_fake file();

test_write(&file_state, &file
test read(&file_state, &file,
Ok(())

} Google Research
https://project-oak.qithub.io/rust-verification-tools/using-propverify/

https://project-oak.github.io/rust-verification-tools/using-propverify/

PropTest and PropVerify

What | want to write...

proptest! {
#[test]
fn test_fileops2(wlen in ©..=1000usize, rlen in ©..=1000usize) -> Result<()> {
let registration = &RustSemaphore::init()?. _dev;
let file state = *mk_file state::<Arc<Semaphore>, FileState>(registration)?;

let file = File::make_fake file();

test_write(&file_state, &file, wlen);
test read(&file state, &file, rlen);
Ok(())

} Google Research
https://project-oak.qithub.io/rust-verification-tools/using-propverify/

https://project-oak.github.io/rust-verification-tools/using-propverify/

What works today

#[no_mangle]
pub fn test fileops2() -> Result<()> {

let wlen = AbstractValue::abstract_value();

let rlen = AbstractValue::abstract value();

let registration = &RustSemaphore::init()?._dev;
let file state = *mk_file_state::<Arc<Semaphore>, FileState>(registration)?;

let file = File::make_fake file();

test write(&file_state, &file, wlen);
test_read(&file_state, &file, rlen);

Ok(())

Google Research
https://project-oak.qithub.io/rust-verification-tools/2021/08/24/rust-on-linux-3.html

https://project-oak.github.io/rust-verification-tools/2021/08/24/rust-on-linux-3.html

How to run a verification tool

Write a parameterized test

Write stub functions for C code called from R4L
Generate LLVM bitcode: WLLVM, --emit=llvm-bc
Link bitcode files

Run verification tool (KLEE)

a bk~ 0D =

Google Research
https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

TOOI ISSUGS tOday (many of these are changing)

Cargo integration — couldn’t use PropVerify
KLEE only for now — finding bugs, not proving

LLVM11 vs LLVM12

s o=

No concurrency support

Google Research
https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

Summary

e \What code to verify
e \What properties to verify

Compiler inserted checks, state machines, system invariants, ...

e Parameterized tests
o Verification continuum (PropVerify and PropTest)

e Tool issues — changing fast

Google Research
https://project-oak.qgithub.io/rust-verification-tools/

https://project-oak.github.io/rust-verification-tools/

Thank You

Alastair Reid

@alastair_d_reid

Google Research

