
Putting the Spine back in the Spineless TaglessG-Machine:An Implementation of Resumable Black-HolesAlastair ReidDepartment of Computer Science, Yale Universityreid-alastair@cs.yale.eduAbstract. Interrupt handling is a tricky business in lazy functional lan-guages: we have to make sure that thunks that are being evaluated can behalted and later restarted if and when they are required. This is a partic-ular problem for implementations which use black-holing. Black-Holingdeliberately makes it impossible to revert such thunks to their originalstate to avoid a serious space leak. Interactive Haskell implementationssuch as Hugs and hbi catch interrupts and avoid the problem by omittingor disabling black-holing. Batch mode Haskell implementations such asHBC and the Glasgow Haskell Compiler (GHC) avoid this problem bydisabling black-holing or by providing no way to catch interrupts. Thispaper describes a modi�cation to GHC's abstract machine (the SpinelessTagless G-Machine) which simultaneously supports both interrupts andblack-holing.1 IntroductionBlack-Holing [6] is an important technique for avoiding space leaks in lazy func-tional languages. When a program starts to evaluate an unevaluated thunk, itcopies the contents of the thunk onto the stack (or into registers) and overwritesthe thunk with an object known as a \black-hole." When the program completesevaluation of the unevaluated thunk, the thunk is overwritten a second time withthe value of the thunk. If the program tries to evaluate a thunk which is alreadybeing evaluated, it reports an error. This is the correct behaviour in a sequen-tial evaluator: it can only happen if the value of the original thunk depends onitself and would have caused an in�nite loop in a system which did not supportblack-holes. (Concurrent evaluation requires di�erent behaviour and is discussedin section 5.4.) Black-Holing a thunk is important because it removes referencesto the free variables of the thunk; if one of these references is the last reference tothe variable, the variable can be garbage collected immediately | reducing theheap usage of the program. Jones [6] shows that simple tail-recursive functionssuch as last can run in constant space with black-holing but require linear spacewithout black-holing.The problem with black-holing is that it assumes that evaluation of a thunkwill not stop until the value of the thunk has been found. This is a problem if

we wish to pause evaluation of a thunk to handle an interrupt or if we wish tospeculatively evaluate a thunk while waiting for user input and pause evaluationwhen user input arrives. In both circumstances, black-holed thunks are left inthe heap and incorrectly report errors if they are subsequently evaluated.An obvious �x is to revert black-holes to their original form when an interruptoccurs. There are two problems with this:1. To revert a black-hole to its original form, we have to preserve the contents ofthe original thunk until evaluation of that thunk completes (i.e., until we'recertain it will not need to be reverted). Doing so retains references to thethunk's free variables restoring the space leak that black-holing is designedto �x.2. Reverting the black-hole to its original form causes us to discard a lot ofthe work we performed in partially evaluating the object. This is contraryto one of the primary properties of lazy evaluation: every thunk is evaluatedat most once.Our solution to these problems is not to revert the black-hole to its originalform but to revert the black-hole to (a representation of) its current partiallyevaluated state.On the Spineless Tagless Graph-reduction Machine (STG machine) [8], thestate of a partially evaluated thunk is stored on the stack; na��ve implementationsof graph reduction do not use the stack in this way: they store the entire state ofa thunk on the \spine" of the thunk. We therefore dub our technique \Puttingthe Spine back in the Spineless Tagless G-Machine."2 Updates in the STG machineThe STG machine is described in detail by Simon Peyton-Jones [8]; here weprovide an overview of the most important parts of the evaluation and updatemachinery.On a na��ve implementation of graph reduction, an update is performed oneach reduction step. For example, in reducinglet x = compose id id 42 in xto 42, a na��ve implementation would update x three times with id (id 42)then with id 42 and �nally with 42. This is ine�cient because it requires theallocation of many intermediate values and because it requires a large numberof writes into the heap.The STG machine avoids these costs by delaying updates until an expressionhas been reduced to weak head normal form: each thunk is evaluated at mostonce.1 To do this, the STG machine maintains a list of thunks which are in the1 The STG machine also allows thunks to be marked as being non-updatable if theyare not shared. Black-Holing causes no problems for non-updatable thunks so theyare ignored in this paper.

process of being evaluated. This list is threaded through the evaluation stackand is manipulated as follows:{ When an (updatable) thunk is \entered" (i.e., evaluation starts), the STGmachine does four things:1. a pointer to the thunk is pushed onto the update list (this thunk is knownas the \updatee");2. the contents of the thunk are pushed onto the stack;3. the thunk is overwritten with a black-hole;2 and4. the thunk's code is executed. If the thunk is an application node, thisenters the object on top of the stack.{ When evaluation of a thunk completes, the top of the stack contains one oftwo things:� A return address: the evaluator simply jumps to the return address.� An entry in the update list: the evaluator overwrites the updatee withthe value of the thunk, removes the update frame from the list and triesto return the value again.3 Reverting Black-HolesAs we noted in the introduction, black-holing causes problems if we interrupt ex-ecution because it is neither possible nor entirely desirable to revert a black-holeto its original form. The solution is simple and, with the aid of 20-20 hindsight,very obvious: instead of reverting the black-hole to its original form, we over-write black-holes with that part of the stack required to complete evaluation ofthe thunk. That is, we revert each black-hole on the update list as follows:1. The black-hole is overwritten with a \resumable black-hole" containing thecontents of the stack above the update frame. If, as is usually the case, theblack-hole is too small to hold the resumable black-hole, a fresh resumableblack-hole is created and the black-hole is overwritten with an indirection tothe resumable black-hole.2. The update frame is removed from the head of the update list.3. A pointer to the black-hole is pushed onto the stack.When the update list is empty, the remainder of the stack is discarded.When the STG machine enters a resumable black-hole, it does exactly thesame as when it enters an updatable application node. That is:1. a pointer to the resumable black-hole is pushed onto the update list;2. the contents of the resumable black-hole are pushed onto the stack;3. the resumable black-hole is overwritten with a black-hole; and4. the object on top of the stack is entered.2 An optimisation known as \lazy black-holing" allows this step to be delayed untilgarbage collection time and is discussed in section 5.1.

The only di�erence between resumable black-holes and application nodes lies inhow they are garbage collected: since we create resumable black-holes by copyingdata o� the stack, they have to be garbage collected like miniature stacks.Figure 1 shows how this works while evaluating this expressionlet a = enumFromTo 1 100b = tail ac = head bin cInitially (�gure 1.i), the heap contains three updatable application nodes a, band c (representing the variables a, b and c respectively), the stack (shown withthe \top" towards the bottom of the page) contains some data D and the top ofthe stack contains a pointer to c. (One of the strengths of our technique is thatit oblivious to what data (if any) occurs between update frames. It is thereforesu�cient to label the areas between update frames A . . . D; we need not worryabout the contents or sizes of these areas.)Figures 1.ii to 1.iv show how the spine of the graph is unwound during eval-uation of c. As each application node is entered, an update frame is pushed ontothe stack and added to the head of the update list, the contents of the node arecopied onto the stack and the node is black-holed.Let us suppose that an interrupt occurs just after a is entered. The next timea thunk is entered (i.e., when enumFromTo is entered), the evaluator detects thatthe thread is to be killed and start to revert all the black-holes on the updatelist.Figures 1.v to 1.viii show how the spine of the graph is reconstructed fromthe stack while reverting black-holes. As each black-hole is reverted, the black-hole is overwritten with a resumable black-hole containing the contents of thestack above the update frame, the update frame is removed from the head of theupdate list and a pointer to the black-hole is pushed onto the stack. When theupdate list is empty, the remainder of the stack is discarded.Suppose now that we start evaluating something else and, in the course ofthat expression, we enter thunk c. The behaviour of the STG machine on en-tering a resumable black-hole reverses the sequence of steps from �gure 1.viii to�gure 1.v. That is:1. Since c is a resumable black-hole, the evaluator adds an update frame to thelist, pushes the data C on the stack, pushes b on the stack, black-holes c andenters b resulting in �gure 1.vii.2. On entering b, the evaluator adds an update frame to the list, pushes the dataB on the stack, pushes a on the stack, black-holes b and enters a resultingin �gure 1.vi.3. On entering a, the evaluator adds an update frame to the list, pushes pointersto 100, 1 and enumFromTo on the stack, black-holes a and enters enumFromToresulting in �gure 1.v.

RBH

enumFromTo

tail

1 100

AP

AP

D

BH

head b

a

c

enumFromTo

1 100

AP
a

D

BH

b

c

BH

C

tail

tailAP
b

headAP
c

enumFromTo

1 100

AP

D

a

1 100

D

BH

b

a

c

BH

C

enum..

BH

B

i)

ii)

iii)

iv)

v)

vi)

vii)

viii)

D

BH

b

a

c

BH

C

B

D

C

D

a
enumFromTo

1 100

a

c

b

a

1 100

enumFromTo

C

B

a

c

b

a

1 100

enumFromTo

C

B

BH

a

c

b

a

B

1 100

enumFromTo

BH

a

c

b

a

B

1 100

enumFromTo

RBH

RBH

RBH

RBH

RBH

RBH

RBH

RBH

Fig. 1. Reverting Black-Holes

The stack has now been restored to its original state prior to the interrupt andexecution continues as before. A similar sequence unfolds if the new evaluationenters a or b.An obvious concern is that using this technique will somehow re-introducethe space leak that black-holing is supposed to remove. This clearly does nothappen:{ Nothing is changed during normal evaluation. We use exactly the same rep-resentation and store exactly the same data as in the original STG machinewith black-holing.{ The resumable black-holes generated when discarding a stack require almostexactly the same space as the original stack.{ After an interrupt occurs, every resumable black-hole contains exactly thedata needed to evaluate it and so it doesn't leak space unless the originalevaluation mechanism leaked space.Despite this, we might still �nd that a resumable black-hole takes more spacethan the original updateable thunk (a thunk may take more space when evalu-ated). We might also �nd that a resumable black-hole takes less space than theoriginal updateable thunk (a thunk may also take less space when evaluated).This is a fundamental property of lazy evaluation rather than a special propertyof black-holes or resumable black-holes: it also happens in na��ve graph reducerswhich have neither.Another concern is that the bene�ts of using this technique may come at asigni�cant cost in performance or in complexity of the runtime system. Again,this does not happen:{ Since nothing is changed during normal evaluation, no overhead is imposedon programs that are not interrupted.{ When a program is interrupted, we copy stack segments into resumableblack-hole objects on the heap; when a black-hole is resumed, we copy thestack segments back onto the stack. These costs are typically quite small(smaller than other runtime costs such garbage collection) and are only in-curred when interrupts occur.{ The implementation is as simple as our description: it consists of a fewhundred lines of C to implement the new object type and to copy stacksegments into resumable black holes.4 Catching InterruptsThe previous section describes how to pause evaluation without leaving black-holes in the heap but says nothing about what to do after evaluation has beenpaused. This section outlines how to catch interrupts in a programming envi-ronment (Hugs) and in the programming language itself. Only the �rst one hasbeen implemented as yet.Catching interrupts is absolutely essential in an interactive system such asGofer [5] or Hugs: we have to be able to terminate long-running programs or

programs that have entered in�nite loops and continue. We have written a mod-i�ed version of Hugs which uses the STG machine for evaluation. When the userinterrupts an evaluation, the Hugs user interface sets a ag in the runtime sys-tem to indicate that an interrupt occurred. Every time the evaluator enters anode, it tests this ag to see whether it should terminate the current evaluationby reverting all black-holes on the update list.To catch interrupts in (Sequential) Haskell we need to add a function likeHaskell 1.3's catch function:catchInterrupt :: IO a -> IO a -> IO aThe expression e `catchInterrupt` h executes the expression e. If e termi-nates before an interrupt occurs, the result of e is returned; if an interrupt occursbefore e terminates, the handler h is executed and the result of h is returned.To implement this, we de�ne a new type of frame which can be inserted inthe update list. These interrupt handler frames contain a pointer to a handlerthunk; they are added to the list when catchInterrupt is executed and removedfrom the list when catchInterrupt completes. When an interrupt occurs, theruntime reverts all black-holes down to the topmost interrupt handler frame,removes the interrupt handler frame and enters the handler thunk.5 VariationsThe STG machine is a very exible architecture allowing a number of optimisa-tions and extensions. This section describes how reverting black-holes interactswith �ve such optimisations and extensions.5.1 Lazy Black-HolingSection 9.3.3 of the STG paper [8] describes an optimisation of black-holingknown as \lazy black-holing" which delays black-holing a thunk until the nextgarbage collection. When garbage collection occurs, it is a simple matter to rundown the update list and black-hole any thunks which are not already black-holed. This does not a�ect the ability of black-holing to eliminate space leaksbecause the space leak does not manifest itself until the next garbage collectionand so there is no harm in delaying black-holing until then. The bene�t of lazyblack-holing is that it avoids the extra e�ort required to black-hole a thunkwhose evaluation completes before a garbage collection occurs.The only thing that changes when reverting black-holes if we use lazy black-holing is that we may have to revert a thunk on the update list which hasn'tbeen black-holed yet. Two questions arise: should we revert the thunk; and canwe revert the thunk. The answer to both questions is \yes":1. Nothing goes drastically wrong if we don't revert the thunk but we lose somelaziness. That is, we discard the result of partially evaluating the thunk andhave to repeat that e�ort if the thunk is re-entered. Worse still, we lose

an unpredictable amount of laziness depending on when we last black-holedthunks on the update list. To avoid these problems, we choose to revert allthunks on the update list even if they haven't been black-holed yet.2. We might worry that a thunk on the update list could be smaller than ablack-hole making it impossible to overwrite with either a resumable black-hole or an indirection to a resumable black-hole. Fortunately, this cannothappen: the system already requires that all updatable thunks are big enoughto overwrite with a black-hole. This is required since we are able to black-holeall the thunks on the update list before reverting them.5.2 The seq and strict functionsHaskell 1.3 added the ability to force evaluation of a thunk using the (equivalent)functions seq and strict instead of by using a case expression. A case expres-sion would have pushed a return address onto the stack but, because seq canbe used on objects with any type (including functions), they require a di�erentimplementation. The seq function is implemented by pushing a \continuation"onto the stack, and adding a \SEQ frame" to the update list so that the evalu-ator enters the continuation correctly. If the evaluator �nds a \SEQ frame" onthe update list when it returns a value, it removes the frame, discards the valueand enters the continuation on top of the stack.This requires the following change to our revertible black-holing mechanism.When we encounter an exception handling frame on the stack, we create a thunkwhich will push a SEQ frame onto the stack, push the stack contents and resumeevaluation. Since the STG machine doesn't have node types that do this already,we have to add SEQ nodes to the system. When a SEQ node is entered, theevaluator adds a SEQ frame to the update list, pushes the node's contents onthe stack and enters the top node.Figure 2 shows how SEQ frames are reverted when executing the expressionlet a = 1 + 2b = a `seq` xin b
RBH

b
BH

BH
a

+ 1 2

A

U

U

+

1

2

a)

A

SEQ
b) b

SEQ

a
RBHFig. 2. Reverting SEQ Frames

Figure 2a shows the state of the stack just before entering +. Thunks a andb have been black-holed and the update list consists of an update frame for a,a SEQ frame and an update frame for b. Frames on the update list are taggedwith U for update frames and SEQ for SEQ frames.Reverting the black-holes and SEQ frames in �gure 2a yields �gure 2b. Theblack-holes are reverted exactly as before and the SEQ frame has been turnedinto a SEQ node containing a pointer to a.This isn't the only possible way of dealing with SEQ frames. An alternativeis to allow resumable black-holes to contain lists of SEQ frames and �ll in resum-able black-holes with everything on the stack that occurs between two updateframes: pending arguments, return addresses, environments, SEQ frames, etc.This avoids the cost of introducing SEQ nodes at the expense of making resum-able black-holes more complex. This extra complexity is most keenly felt in thegarbage collector | which is already quite complex enough!5.3 Exception handlingWe recently extended the STG machine with an exception handling mecha-nism [10, 11] which uses the update list to store exception handlers as well asupdatees. When the evaluator �nds an exception handler on the update list asit is trying to return a value, it removes the exception handler and tries again.This requires the following change to our revertible black-holing mechanism.When we encounter an update frame on the update list, we (already) createa thunk to push an update frame onto the stack, push the stack contents andcontinue evaluation where it left o�. Similarily, when we encounter an exceptionhandling frame on the stack, we create a thunk to push an exception handlingframe onto the stack, push the stack contents and resume evaluation. Since theSTG machine doesn't have node types that do this already, we have to addCATCH nodes to the system. When a CATCH node is entered, the evaluator addsan exception handler frame to the update list, pushes the node's contents on thestack and enters the top node.Figure 3 shows how exception handlers are reverted when executing the ex-pression3let a = print 1b = a `catchException` hc = b >> xin yFigure 3a shows the state of the stack just before entering print. Thunks a,b and c have been black-holed and the update list consists of an update framefor a, an exception handler frame, an update frame for b and an update frame3 The expression a `catchException` h evaluates a and returns its result; if an ex-ception is thrown while evaluating a, then the handler h is invoked and the result ofh is returned.

RBH

C

B

print 1

h

b

c

BH

BH

BH

C

B

A

D

print

1

U

U

E

U
a

a) b)

c

b

a

h ACATCH

RBH

RBH

Fig. 3. Reverting Exception Handlersfor c. Frames on the update list are tagged with U for update frames and E forexception handler frames.Reverting the black-holes and exception handlers in �gure 3a, results in �g-ure 3b. The black-holes are reverted exactly as before and the exception handlingframe has been turned into a CATCH node containing the handler h, the applica-tion node a and the data A.Again, we could have added support for exception handling by enriching thestructure of resumable black-holes. The tradeo� here is exactly as it was withSEQ frames but since the choice is now between one complex object and threesimple objects the decision to introduce a new node type isn't quite so clear.5.4 Concurrent HaskellThe STG machine has been extended to support concurrent threads [9]. In aconcurrent system, black-holing is modi�ed as follows. We add a queue of threadsto every black-hole | the \blocking queue" of the black-hole. The �rst time athunk is entered, it is overwritten with a black-hole with an empty queue. Ifanother thread tries to enter a black-hole that thread is suspended and addedto the blocking queue. When evaluation of a thunk completes, its black-hole isoverwritten with the value of the thunk and all threads in the blocking queueare added to the (global) queue of runnable threads.This blocking behaviour requires the following change when reverting black-holes: when a black-hole is reverted, all threads in the blocking queue are addedto the (global) queue of runnable threads. When these threads next try to exe-cute, the �rst thread will enter the resumable black-hole and rebuild the stackexactly as it was when the thread was interrupted and all subsequent threadswill be added to the blocking queue as before.To catch interrupts in Concurrent Haskell [9] we need to add two things:44 A full threads library might add further features, here we restrict ourselves to theminimum required to catch interrupts.

1. The ability to terminate a thread; and2. The ability to wait for an interrupt to occur.It is then straightforward to create threads which wait for interrupts and killother threads when they occur. This can be combined with functions which waitfor a given time period to provide timeouts as well.To terminate a thread, we need to add thread identi�ers and a function to killa thread. The function killThread must revert all black-holes on the thread'supdate list before killing the thread.data ThreadId -- abstractforkIO :: IO a -> IO ThreadIdgetThreadId :: IO ThreadIdkillThread :: ThreadId -> IO ()We also need a way of waiting for an interrupt. This requires a small changeto the runtime system to maintain a list of threads waiting for interrupts and addthe threads to the runnable queue when an interrupt occurs. This is a (simpli�ed)form of how timers are currently handled.waitForInterrupt :: IO ()5.5 Parallel HaskellThe STG machine has been extended to run on parallel architectures [14]. Black-holes act in the same way as in Concurrent Haskell (i.e., threads block on thunkswhich are already being evaluated). The big change from Concurrent Haskell isthat each processor only has access to a small part of the global heap; if aprocessor requires an object stored in another part of the graph, it must askanother processor to send it the object. If the object is already being evaluatedby a processor, the request blocks until evaluation terminates.We have not implemented resumable black-holes in Parallel Haskell but webelieve that it should be straightforward since reverting the black-holes on athread's stack is a local operation. When a thread is interrupted, all pendingupdates are reverted in the same way as in Concurrent Haskell. Just as threadsblocked on a black-hole are moved to the queue of runnable threads in ConcurrentHaskell, so blocked requests (to move an object to another processor) are movedto the queue of \runnable" requests. Note that it is very important that an objectcannot be moved while it is being evaluated since we must be able to overwritethe original object with a resumable black-hole when a thread is interrupted.Being able to interrupt a thread is particularily important in Parallel Haskellsince it makes it possible to control speculative evaluation on idle processors [7].When resources (CPU and memory) are abundant, speculative threads can becreated; and when resources are scarce or poorly balanced between processors,speculative threads can be terminated. Using our revertible black-holes, termi-nating a thread has the e�ect of splitting its stack into many small parts allowingunwanted parts to be reclaimed and allowing parts required by other processorsto move to the other processor.

6 Related WorkLazy functional programs can su�er from a variety of space leaks. Whilst manyof these problems can only be eliminated by modifying your program, some spaceleaks can be �xed in the evaluator or in the garbage collector.One of the �rst such �xes was the \lazy tuple matching" space leak reportedby Hughes [3]. The problem is that extracting a component of a data-structure(aka \tuple matching") is performed lazily and so the runtime system may hangonto a large data structure of which only a small component is required. Wadlershowed how this could be �xed by modifying the garbage collector [15] and, morerecently, Sparud showed how this could be solved by modifying the evaluator [13].Another space leak which can be automatically plugged was accidentally in-troduced by \optimising" tail calls in the G-machine. This problem was identi�edand �xed by Jones with the introduction of black-holing [6].Shortly after the introduction of black-holing, Runciman and Wakeling founda ba�ing space leak using their heap pro�ling tool [12]. They suspected a prob-lem in their tool until they realised that the problem was the same one reportedby Jones. Adding black-holing to their compiler removed this leak and resultedin a factor of four reduction in the cost of running a benchmark. The combi-nation of black-holing, Wadler's �x for the \lazy tuple match" leak and �xingprogramming problems identi�ed by their tool reduced the space-time cost oftheir program by two orders of magnitude.Until now, the major problem with black-holing has been its incompatabilitywith interrupts and with speculative evaluation. Mattson and Griswold [7] use\grey-holes"(a kind of revertible black-hole) to synchronize threads in a ParallelHaskell implementation but, unlike resumable black-holes, terminating a specu-lative thread reverts grey-holes to their original form. This su�ers from the twoproblems listed in the introduction: it reintroduces the space leak; and it discardswork. They suggest that discarding work is bene�cial since the unevaluated formof the thunk is often smaller than the evaluated form but Hughes [4] suggeststhat the opposite is sometimes true.Trinder et al.[14] use black-holes when moving objects from one processor toanother. While the object is in transit, it is overwritten with a \revertible black-hole." If the object is rejected (perhaps because the receiver runs out of heapspace), the black-hole is reverted to its original form; otherwise, the revertibleblack-hole acts like a normal black-hole and is updated with an indirection tothe (as yeat still unevaluated) thunk on the remote processor. Like Mattson andGriswold, the black-hole may be reverted to its original form, but this doesn'tcause the same problems since revertible black-holes only last long enough tosuccessfully transfer an object from one processor to another. Their system hasno need for resumable black-holes since it does not support interrupt catchingand it provides task migration in preference to speculative evaluation.More recently, Chakravarty uses a similar technique to cover communicationlatencies in his massively parallel STG machine [2]. Besides his di�erent motiva-tion (Chakravarty does not mention interrupts, killing threads or black-holing),there are some important technical di�erences:

{ Chakravarty suspends closures (using objects like our resumable black-holes)while waiting for a value to be received from a remote processor and resumesthe closure when the value arrives. Since each closure requires di�erent sets ofvalues from other processors, Chakravarty only suspends the topmost closureinstead of reverting all closures currently under evaluation. If the programterminates successfully, all suspended closures will have been restarted.{ In contrast, we are concerned with interrupting normal sequential evaluation:closures are suspended when an interrupt is received and restarted only if andwhen they are needed by the interrupt handler. Since interrupts a�ect theentire execution, we suspend all closures which are currently under evaluationby walking down the update list. Most resumable black-holes are not requiredby the interrupt handler and are quickly garbage collected.In short, Chakravarty suspends closures which are waiting to be sent input whilewe suspend closures which are waiting for their output to be (re)demanded.Looking farther a�eld, similar problems and similar solutions are found when-ever computer scientists want to cancel speculative evaluation or handle excep-tions.{ The most important feature of exception and interrupt handling mecha-nisms is the ability to specify how to clean up shared state. In imperativelanguages, is necessary to write your own cleanup code since the languagecannot be expected to know how to restore your program to a consistentstate. This is not necessary in the pure subset of Haskell (i.e., the part ofHaskell where black-holing is used) because the the lack of side-e�ects limitsthe problems to those introduced by the implementation. In the imperativesubset of Haskell, the programmer must write their own cleanup code | werecently added exception-handling to Haskell for this purpose [10, 11].{ Multiscalar processors perform a considerable amount of speculative evalu-ation and must clean up their internal state when a speculative evaluationis terminated. For example, Breach et al. [1] describe an architecture whichtracks dependencies between di�erent stages of the processor. Terminatingone stage automatically terminates those stages which have used values pro-duced by the terminating stage. Like our technique, cleanup is performedautomatically; unlike our approach work done by the stage is discarded toundo side-e�ects (and also to conserve resources).7 ConclusionsThe Spineless Tagless G-Machine is an e�cient graph-reduction machine whichstores the spine of the graph on the stack (rather than storing it on the heap)and which uses black-holing to avoid the resulting space leak. This optimisationcomes at a cost: we can't resume interrupted evaluations because black-holingassumes that thunks are only entered once. We have shown that this problemcan be resolved e�ciently by restoring the spine of the graph to the heap andwe have outlined how it interacts with a range of extensions to the language andto the implementation.

Acknowledgements We are grateful to Simon Peyton Jones, Simon Marlowand John Peterson for comments on our approach and on this paper and toPaul Hudak and Greg Hager whose interest in programming robots in Haskellhelped motivate this work. We are also grateful to the anonymous referees fortheir interesting and useful feedback | we found the pointers to related workoutside the Haskell community particularily intriguing.References1. S. Breach, T. N. Vijaykumar, and G. S. Sohi. The anatomy of the register �le ina multiscalar processor. In 27th Annual International Symposium on Microarchi-tecture (MICRO-27), pages 181{190. ACM press, 1994.2. M. Chakravarty. Lazy thread and task creation in parallel graph-reduction. InProceedings of IFL'97, volume 1467 of Lecture Notes in Computer Science, pages231{249. Springer Verlag, September 1997.3. R. J. M. Hughes. The Design and Implementation of Programming Languages.PhD thesis, Oxford University, 1984.4. R. J. M. Hughes. Parallel functional languages use less space. In Symposium onLisp and Functional Programming, Austin, 1984.5. M. Jones. The implementation of the Gofer functional programming system. Re-search Report YALEU/DCS/RR-1030, Yale University, May 1994.6. R. E. Jones. Tail recursion without space leaks. Journal of Functional Program-ming, 2(1):73{79, January 1992.7. J. S. Mattson Jr. and W. G. Griswold. Speculative evaluation for parallel graphreduction. In Parallel Architectures and Compilation Techniques, pages 331{334.North-Holland, August 1994.8. S. Peyton Jones. Implementing lazy functional languages on stock hardware: theSpineless Tagless G-machine. Journal of Functional Programming, 2(2):127{202,April 1992.9. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Principles ofProgramming Languages, pages 295{308. ACM press, January 1996.10. S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A semanticsfor imprecise exceptions. In Programming Languages Design and Implementation.ACM press, May 1999.11. A. Reid. Handling Exceptions in Haskell. Research Report YALEU/DCS/RR-1175, Yale University, Department of Computer Science, August 1998.12. C. Runciman and D. Wakeling. Heap pro�ling of lazy functional programs. Journalof Functional Programming, 3(2):217{246, April 1993.13. J. Sparud. Fixing some space leaks without a garbage collector. In Proc. Conferenceon Functional Programming Languages and Computer Architecture. ACM, 1993.14. P. Trinder, K. Hammond, J. Mattson Jr, A. Partridge, and S. Peyton Jones. GUM:a portable parallel implementation of Haskell. In Programming Languages Designand Implementation, pages 79{88. ACM press, 1996.15. P. L. Wadler. Fixing a space leak with a garbage collector. Software | Practiceand Experience, 17(9):595{608, 1987.

