Putting the Spine back in the Spineless Tagless
G-Machine:
An Implementation of Resumable Black-Holes

Alastair Reid

Department of Computer Science, Yale University
reid-alastair@cs.yale.edu

Abstract. Interrupt handling is a tricky business in lazy functional lan-
guages: we have to make sure that thunks that are being evaluated can be
halted and later restarted if and when they are required. This is a partic-
ular problem for implementations which use black-holing. Black-Holing
deliberately makes it impossible to revert such thunks to their original
state to avoid a serious space leak. Interactive Haskell implementations
such as Hugs and hbi catch interrupts and avoid the problem by omitting
or disabling black-holing. Batch mode Haskell implementations such as
HBC and the Glasgow Haskell Compiler (GHC) avoid this problem by
disabling black-holing or by providing no way to catch interrupts. This
paper describes a modification to GHC’s abstract machine (the Spineless
Tagless G-Machine) which simultaneously supports both interrupts and
black-holing.

1 Introduction

Black-Holing [6] is an important technique for avoiding space leaks in lazy func-
tional languages. When a program starts to evaluate an unevaluated thunk, it
copies the contents of the thunk onto the stack (or into registers) and overwrites
the thunk with an object known as a “black-hole.” When the program completes
evaluation of the unevaluated thunk, the thunk is overwritten a second time with
the value of the thunk. If the program tries to evaluate a thunk which is already
being evaluated, it reports an error. This is the correct behaviour in a sequen-
tial evaluator: it can only happen if the value of the original thunk depends on
itself and would have caused an infinite loop in a system which did not support
black-holes. (Concurrent evaluation requires different behaviour and is discussed
in section 5.4.) Black-Holing a thunk is important because it removes references
to the free variables of the thunk; if one of these references is the last reference to
the variable, the variable can be garbage collected immediately reducing the
heap usage of the program. Jones [6] shows that simple tail-recursive functions
such as last can run in constant space with black-holing but require linear space
without black-holing.

The problem with black-holing is that it assumes that evaluation of a thunk
will not stop until the value of the thunk has been found. This is a problem if

we wish to pause evaluation of a thunk to handle an interrupt or if we wish to
speculatively evaluate a thunk while waiting for user input and pause evaluation
when user input arrives. In both circumstances, black-holed thunks are left in
the heap and incorrectly report errors if they are subsequently evaluated.

An obvious fix is to revert black-holes to their original form when an interrupt
occurs. There are two problems with this:

1. To revert a black-hole to its original form, we have to preserve the contents of
the original thunk until evaluation of that thunk completes (i.e., until we’re
certain it will not need to be reverted). Doing so retains references to the
thunk’s free variables restoring the space leak that black-holing is designed
to fix.

2. Reverting the black-hole to its original form causes us to discard a lot of
the work we performed in partially evaluating the object. This is contrary
to one of the primary properties of lazy evaluation: every thunk is evaluated
at most once.

Our solution to these problems is not to revert the black-hole to its original
form but to revert the black-hole to (a representation of) its current partially
evaluated state.

On the Spineless Tagless Graph-reduction Machine (STG machine) [8], the
state of a partially evaluated thunk is stored on the stack; naive implementations
of graph reduction do not use the stack in this way: they store the entire state of
a thunk on the “spine” of the thunk. We therefore dub our technique “Putting
the Spine back in the Spineless Tagless G-Machine.”

2 Updates in the STG machine

The STG machine is described in detail by Simon Peyton-Jones [8]; here we
provide an overview of the most important parts of the evaluation and update
machinery.

On a naive implementation of graph reduction, an update is performed on
each reduction step. For example, in reducing

let x = compose id id 42 in x

to 42, a naive implementation would update x three times with id (id 42)
then with id 42 and finally with 42. This is inefficient because it requires the
allocation of many intermediate values and because it requires a large number
of writes into the heap.

The STG machine avoids these costs by delaying updates until an expression
has been reduced to weak head normal form: each thunk is evaluated at most
once.! To do this, the STG machine maintains a list of thunks which are in the

! The STG machine also allows thunks to be marked as being non-updatable if they
are not shared. Black-Holing causes no problems for non-updatable thunks so they
are ignored in this paper.

process of being evaluated. This list is threaded through the evaluation stack
and is manipulated as follows:

— When an (updatable) thunk is “entered” (i.e., evaluation starts), the STG
machine does four things:
1. a pointer to the thunk is pushed onto the update list (this thunk is known
as the “updatee”);
2. the contents of the thunk are pushed onto the stack;
3. the thunk is overwritten with a black-hole;? and
4. the thunk’s code is executed. If the thunk is an application node, this
enters the object on top of the stack.
— When evaluation of a thunk completes, the top of the stack contains one of
two things:
e A return address: the evaluator simply jumps to the return address.
e An entry in the update list: the evaluator overwrites the updatee with
the value of the thunk, removes the update frame from the list and tries
to return the value again.

3 Reverting Black-Holes

As we noted in the introduction, black-holing causes problems if we interrupt ex-
ecution because it is neither possible nor entirely desirable to revert a black-hole
to its original form. The solution is simple and, with the aid of 20-20 hindsight,
very obvious: instead of reverting the black-hole to its original form, we over-
write black-holes with that part of the stack required to complete evaluation of
the thunk. That is, we revert each black-hole on the update list as follows:

1. The black-hole is overwritten with a “resumable black-hole” containing the
contents of the stack above the update frame. If, as is usually the case, the
black-hole is too small to hold the resumable black-hole, a fresh resumable
black-hole is created and the black-hole is overwritten with an indirection to
the resumable black-hole.

2. The update frame is removed from the head of the update list.

3. A pointer to the black-hole is pushed onto the stack.

When the update list is empty, the remainder of the stack is discarded.
When the STG machine enters a resumable black-hole, it does exactly the
same as when it enters an updatable application node. That is:

1. a pointer to the resumable black-hole is pushed onto the update list;
2. the contents of the resumable black-hole are pushed onto the stack;
3. the resumable black-hole is overwritten with a black-hole; and

4. the object on top of the stack is entered.

2 An optimisation known as “lazy black-holing” allows this step to be delayed until
garbage collection time and is discussed in section 5.1.

The only difference between resumable black-holes and application nodes lies in

how they are garbage collected: since we create resumable black-holes by copying

data off the stack, they have to be garbage collected like miniature stacks.
Figure 1 shows how this works while evaluating this expression

let a = enumFromTo 1 100
b = tail a
c = head b

in c

Initially (figure 1.i), the heap contains three updatable application nodes a, b
and c (representing the variables a, b and c respectively), the stack (shown with
the “top” towards the bottom of the page) contains some data D and the top of
the stack contains a pointer to c. (One of the strengths of our technique is that
it oblivious to what data (if any) occurs between update frames. It is therefore
sufficient to label the areas between update frames A ...D; we need not worry
about the contents or sizes of these areas.)

Figures 1.ii to 1.iv show how the spine of the graph is unwound during eval-
uation of c. As each application node is entered, an update frame is pushed onto
the stack and added to the head of the update list, the contents of the node are
copied onto the stack and the node is black-holed.

Let us suppose that an interrupt occurs just after a is entered. The next time
a thunk is entered (i.e., when enumFromTo is entered), the evaluator detects that
the thread is to be killed and start to revert all the black-holes on the update
list.

Figures 1.v to 1.viii show how the spine of the graph is reconstructed from
the stack while reverting black-holes. As each black-hole is reverted, the black-
hole is overwritten with a resumable black-hole containing the contents of the
stack above the update frame, the update frame is removed from the head of the
update list and a pointer to the black-hole is pushed onto the stack. When the
update list is empty, the remainder of the stack is discarded.

Suppose now that we start evaluating something else and, in the course of
that expression, we enter thunk c. The behaviour of the STG machine on en-
tering a resumable black-hole reverses the sequence of steps from figure 1.viii to
figure 1.v. That is:

1. Since c is a resumable black-hole, the evaluator adds an update frame to the
list, pushes the data C on the stack, pushes b on the stack, black-holes ¢ and
enters b resulting in figure 1.vii.

2. On entering b, the evaluator adds an update frame to the list, pushes the data
B on the stack, pushes a on the stack, black-holes b and enters a resulting
in figure 1.vi.

3. On entering a, the evaluator adds an update frame to the list, pushes pointers
to 100, 1 and enumFromTo on the stack, black-holes a and enters enumFromTo
resulting in figure 1.v.

V) D

b

EET

/N
° |
l

2]

b [cmmpronto [T e onrrronmo | |

g

ii) b vi) b
] R
c
heﬁ”\ti b
A ——{rev[, | B |

m enumFromTo nn

iii) D vii) D

a

c viii) c

b b
= [=] [Ren], |
B
< a a

o,

Fig. 1. Reverting Black-Holes

The stack has now been restored to its original state prior to the interrupt and
execution continues as before. A similar sequence unfolds if the new evaluation
enters a or b.

An obvious concern is that using this technique will somehow re-introduce
the space leak that black-holing is supposed to remove. This clearly does not
happen:

— Nothing is changed during normal evaluation. We use exactly the same rep-
resentation and store exactly the same data as in the original STG machine
with black-holing.

— The resumable black-holes generated when discarding a stack require almost
exactly the same space as the original stack.

— After an interrupt occurs, every resumable black-hole contains exactly the
data needed to evaluate it and so it doesn’t leak space unless the original
evaluation mechanism leaked space.

Despite this, we might still find that a resumable black-hole takes more space
than the original updateable thunk (a thunk may take more space when evalu-
ated). We might also find that a resumable black-hole takes less space than the
original updateable thunk (a thunk may also take less space when evaluated).
This is a fundamental property of lazy evaluation rather than a special property
of black-holes or resumable black-holes: it also happens in naive graph reducers
which have neither.

Another concern is that the benefits of using this technique may come at a
significant cost in performance or in complexity of the runtime system. Again,
this does not happen:

— Since nothing is changed during normal evaluation, no overhead is imposed
on programs that are not interrupted.

— When a program is interrupted, we copy stack segments into resumable
black-hole objects on the heap; when a black-hole is resumed, we copy the
stack segments back onto the stack. These costs are typically quite small
(smaller than other runtime costs such garbage collection) and are only in-
curred when interrupts occur.

— The implementation is as simple as our description: it consists of a few
hundred lines of C to implement the new object type and to copy stack
segments into resumable black holes.

4 Catching Interrupts

The previous section describes how to pause evaluation without leaving black-
holes in the heap but says nothing about what to do after evaluation has been
paused. This section outlines how to catch interrupts in a programming envi-
ronment (Hugs) and in the programming language itself. Only the first one has
been implemented as yet.

Catching interrupts is absolutely essential in an interactive system such as
Gofer [5] or Hugs: we have to be able to terminate long-running programs or

programs that have entered infinite loops and continue. We have written a mod-
ified version of Hugs which uses the STG machine for evaluation. When the user
interrupts an evaluation, the Hugs user interface sets a flag in the runtime sys-
tem to indicate that an interrupt occurred. Every time the evaluator enters a
node, it tests this flag to see whether it should terminate the current evaluation
by reverting all black-holes on the update list.

To catch interrupts in (Sequential) Haskell we need to add a function like
Haskell 1.3’s catch function:

catchInterrupt :: I0 a -> I0 a -> I0 a

The expression e ‘catchInterrupt‘ h executes the expression e. If e termi-
nates before an interrupt occurs, the result of e is returned; if an interrupt occurs
before e terminates, the handler h is executed and the result of h is returned.

To implement this, we define a new type of frame which can be inserted in
the update list. These interrupt handler frames contain a pointer to a handler
thunk; they are added to the list when catchInterrupt is executed and removed
from the list when catchInterrupt completes. When an interrupt occurs, the
runtime reverts all black-holes down to the topmost interrupt handler frame,
removes the interrupt handler frame and enters the handler thunk.

5 Variations

The STG machine is a very flexible architecture allowing a number of optimisa-
tions and extensions. This section describes how reverting black-holes interacts
with five such optimisations and extensions.

5.1 Lazy Black-Holing

Section 9.3.3 of the STG paper [8] describes an optimisation of black-holing
known as “lazy black-holing” which delays black-holing a thunk until the next
garbage collection. When garbage collection occurs, it is a simple matter to run
down the update list and black-hole any thunks which are not already black-
holed. This does not affect the ability of black-holing to eliminate space leaks
because the space leak does not manifest itself until the next garbage collection
and so there is no harm in delaying black-holing until then. The benefit of lazy
black-holing is that it avoids the extra effort required to black-hole a thunk
whose evaluation completes before a garbage collection occurs.

The only thing that changes when reverting black-holes if we use lazy black-
holing is that we may have to revert a thunk on the update list which hasn’t
been black-holed yet. Two questions arise: should we revert the thunk; and can
we revert the thunk. The answer to both questions is “yes”:

1. Nothing goes drastically wrong if we don’t revert the thunk but we lose some
laziness. That is, we discard the result of partially evaluating the thunk and
have to repeat that effort if the thunk is re-entered. Worse still, we lose

an unpredictable amount of laziness depending on when we last black-holed
thunks on the update list. To avoid these problems, we choose to revert all
thunks on the update list even if they haven’t been black-holed yet.

2. We might worry that a thunk on the update list could be smaller than a
black-hole making it impossible to overwrite with either a resumable black-
hole or an indirection to a resumable black-hole. Fortunately, this cannot
happen: the system already requires that all updatable thunks are big enough
to overwrite with a black-hole. This is required since we are able to black-hole
all the thunks on the update list before reverting them.

5.2 The seq and strict functions

Haskell 1.3 added the ability to force evaluation of a thunk using the (equivalent)
functions seq and strict instead of by using a case expression. A case expres-
sion would have pushed a return address onto the stack but, because seq can
be used on objects with any type (including functions), they require a different
implementation. The seq function is implemented by pushing a “continuation”
onto the stack, and adding a “SEQ frame” to the update list so that the evalu-
ator enters the continuation correctly. If the evaluator finds a “SEQ frame” on
the update list when it returns a value, it removes the frame, discards the value
and enters the continuation on top of the stack.

This requires the following change to our revertible black-holing mechanism.
When we encounter an exception handling frame on the stack, we create a thunk
which will push a SEQ frame onto the stack, push the stack contents and resume
evaluation. Since the STG machine doesn’t have node types that do this already,
we have to add SEQ nodes to the system. When a SEQ node is entered, the
evaluator adds a SEQ frame to the update list, pushes the node’s contents on
the stack and enters the top node.

Figure 2 shows how SEQ) frames are reverted when executing the expression

1 +2
a ‘seq‘ x

let a
b

in b

) U] b b) b
Y s [rerr |, |
A
“ ol b s [] A]
2
1 a
.

Fig. 2. Reverting SEQ Frames

Figure 2a shows the state of the stack just before entering +. Thunks a and
b have been black-holed and the update list consists of an update frame for a,
a SEQ frame and an update frame for b. Frames on the update list are tagged
with U for update frames and SEQ for SEQ frames.

Reverting the black-holes and SEQ frames in figure 2a yields figure 2b. The
black-holes are reverted exactly as before and the SEQ frame has been turned
into a SEQ node containing a pointer to a.

This isn’t the only possible way of dealing with SEQ frames. An alternative
is to allow resumable black-holes to contain lists of SEQ frames and fill in resum-
able black-holes with everything on the stack that occurs between two update
frames: pending arguments, return addresses, environments, SEQ frames, etc.
This avoids the cost of introducing SEQ nodes at the expense of making resum-
able black-holes more complex. This extra complexity is most keenly felt in the
garbage collector which is already quite complex enough!

5.3 Exception handling

We recently extended the STG machine with an exception handling mecha-
nism [10,11] which uses the update list to store exception handlers as well as
updatees. When the evaluator finds an exception handler on the update list as
it is trying to return a value, it removes the exception handler and tries again.

This requires the following change to our revertible black-holing mechanism.
When we encounter an update frame on the update list, we (already) create
a thunk to push an update frame onto the stack, push the stack contents and
continue evaluation where it left off. Similarily, when we encounter an exception
handling frame on the stack, we create a thunk to push an exception handling
frame onto the stack, push the stack contents and resume evaluation. Since the
STG machine doesn’t have node types that do this already, we have to add
CATCH nodes to the system. When a CATCH node is entered, the evaluator adds
an exception handler frame to the update list, pushes the node’s contents on the
stack and enters the top node.

Figure 3 shows how exception handlers are reverted when executing the ex-
pression?

let a = print 1
b = a ‘catchException‘ h
c b > x

in y

Figure 3a shows the state of the stack just before entering print. Thunks a,
b and c have been black-holed and the update list consists of an update frame
for a, an exception handler frame, an update frame for b and an update frame

* The expression a ‘catchException‘ h evaluates a and returns its result; if an ex-
ception is thrown while evaluating a, then the handler h is invoked and the result of
h is returned.

a) D b)

NN
n
l
2]
g

= [eln o[[A]
A

\\u\f—i aRBHprim
1
print

Fig. 3. Reverting Exception Handlers

for c. Frames on the update list are tagged with U for update frames and E for
exception handler frames.

Reverting the black-holes and exception handlers in figure 3a, results in fig-
ure 3b. The black-holes are reverted exactly as before and the exception handling
frame has been turned into a CATCH node containing the handler h, the applica-
tion node a and the data A.

Again, we could have added support for exception handling by enriching the
structure of resumable black-holes. The tradeoff here is exactly as it was with
SEQ frames but since the choice is now between one complex object and three
simple objects the decision to introduce a new node type isn’t quite so clear.

5.4 Concurrent Haskell

The STG machine has been extended to support concurrent threads [9]. In a
concurrent system, black-holing is modified as follows. We add a queue of threads
to every black-hole — the “blocking queue” of the black-hole. The first time a
thunk is entered, it is overwritten with a black-hole with an empty queue. If
another thread tries to enter a black-hole that thread is suspended and added
to the blocking queue. When evaluation of a thunk completes, its black-hole is
overwritten with the value of the thunk and all threads in the blocking queue
are added to the (global) queue of runnable threads.

This blocking behaviour requires the following change when reverting black-
holes: when a black-hole is reverted, all threads in the blocking queue are added
to the (global) queue of runnable threads. When these threads next try to exe-
cute, the first thread will enter the resumable black-hole and rebuild the stack
exactly as it was when the thread was interrupted and all subsequent threads
will be added to the blocking queue as before.

To catch interrupts in Concurrent Haskell [9] we need to add two things:*

* A full threads library might add further features, here we restrict ourselves to the
minimum required to catch interrupts.

1. The ability to terminate a thread; and
2. The ability to wait for an interrupt to occur.

It is then straightforward to create threads which wait for interrupts and kill
other threads when they occur. This can be combined with functions which wait
for a given time period to provide timeouts as well.

To terminate a thread, we need to add thread identifiers and a function to kill
a thread. The function killThread must revert all black-holes on the thread’s
update list before killing the thread.

data ThreadId -- abstract

forkIO :: I0 a -> I0 ThreadId
getThreadId :: I0 ThreadId
killThread :: ThreadId -> I0 ()

We also need a way of waiting for an interrupt. This requires a small change
to the runtime system to maintain a list of threads waiting for interrupts and add
the threads to the runnable queue when an interrupt occurs. This is a (simplified)
form of how timers are currently handled.

waitForInterrupt :: I0 ()

5.5 Parallel Haskell

The STG machine has been extended to run on parallel architectures [14]. Black-
holes act in the same way as in Concurrent Haskell (i.e., threads block on thunks
which are already being evaluated). The big change from Concurrent Haskell is
that each processor only has access to a small part of the global heap; if a
processor requires an object stored in another part of the graph, it must ask
another processor to send it the object. If the object is already being evaluated
by a processor, the request blocks until evaluation terminates.

We have not implemented resumable black-holes in Parallel Haskell but we
believe that it should be straightforward since reverting the black-holes on a
thread’s stack is a local operation. When a thread is interrupted, all pending
updates are reverted in the same way as in Concurrent Haskell. Just as threads
blocked on a black-hole are moved to the queue of runnable threads in Concurrent
Haskell, so blocked requests (to move an object to another processor) are moved
to the queue of “runnable” requests. Note that it is very important that an object
cannot be moved while it is being evaluated since we must be able to overwrite
the original object with a resumable black-hole when a thread is interrupted.

Being able to interrupt a thread is particularily important in Parallel Haskell
since it makes it possible to control speculative evaluation on idle processors [7].
When resources (CPU and memory) are abundant, speculative threads can be
created; and when resources are scarce or poorly balanced between processors,
speculative threads can be terminated. Using our revertible black-holes, termi-
nating a thread has the effect of splitting its stack into many small parts allowing
unwanted parts to be reclaimed and allowing parts required by other processors
to move to the other processor.

6 Related Work

Lazy functional programs can suffer from a variety of space leaks. Whilst many
of these problems can only be eliminated by modifying your program, some space
leaks can be fixed in the evaluator or in the garbage collector.

One of the first such fixes was the “lazy tuple matching” space leak reported
by Hughes [3]. The problem is that extracting a component of a data-structure
(aka “tuple matching”) is performed lazily and so the runtime system may hang
onto a large data structure of which only a small component is required. Wadler
showed how this could be fixed by modifying the garbage collector [15] and, more
recently, Sparud showed how this could be solved by modifying the evaluator [13].

Another space leak which can be automatically plugged was accidentally in-
troduced by “optimising” tail calls in the G-machine. This problem was identified
and fixed by Jones with the introduction of black-holing [6].

Shortly after the introduction of black-holing, Runciman and Wakeling found
a baffling space leak using their heap profiling tool [12]. They suspected a prob-
lem in their tool until they realised that the problem was the same one reported
by Jones. Adding black-holing to their compiler removed this leak and resulted
in a factor of four reduction in the cost of running a benchmark. The combi-
nation of black-holing, Wadler’s fix for the “lazy tuple match” leak and fixing
programming problems identified by their tool reduced the space-time cost of
their program by two orders of magnitude.

Until now, the major problem with black-holing has been its incompatability
with interrupts and with speculative evaluation. Mattson and Griswold [7] use
“grey-holes” (a kind of revertible black-hole) to synchronize threads in a Parallel
Haskell implementation but, unlike resumable black-holes, terminating a specu-
lative thread reverts grey-holes to their original form. This suffers from the two
problems listed in the introduction: it reintroduces the space leak; and it discards
work. They suggest that discarding work is beneficial since the unevaluated form
of the thunk is often smaller than the evaluated form but Hughes [4] suggests
that the opposite is sometimes true.

Trinder et al.[14] use black-holes when moving objects from one processor to
another. While the object is in transit, it is overwritten with a “revertible black-
hole.” If the object is rejected (perhaps because the receiver runs out of heap
space), the black-hole is reverted to its original form; otherwise, the revertible
black-hole acts like a normal black-hole and is updated with an indirection to
the (as yeat still unevaluated) thunk on the remote processor. Like Mattson and
Griswold, the black-hole may be reverted to its original form, but this doesn’t
cause the same problems since revertible black-holes only last long enough to
successfully transfer an object from one processor to another. Their system has
no need for resumable black-holes since it does not support interrupt catching
and it provides task migration in preference to speculative evaluation.

More recently, Chakravarty uses a similar technique to cover communication
latencies in his massively parallel STG machine [2]. Besides his different motiva-
tion (Chakravarty does not mention interrupts, killing threads or black-holing),
there are some important technical differences:

— Chakravarty suspends closures (using objects like our resumable black-holes)
while waiting for a value to be received from a remote processor and resumes
the closure when the value arrives. Since each closure requires different sets of
values from other processors, Chakravarty only suspends the topmost closure
instead of reverting all closures currently under evaluation. If the program
terminates successfully, all suspended closures will have been restarted.

— In contrast, we are concerned with interrupting normal sequential evaluation:
closures are suspended when an interrupt, is received and restarted only if and
when they are needed by the interrupt handler. Since interrupts affect the
entire execution, we suspend all closures which are currently under evaluation
by walking down the update list. Most resumable black-holes are not required
by the interrupt handler and are quickly garbage collected.

In short, Chakravarty suspends closures which are waiting to be sent input while
we suspend closures which are waiting for their output to be (re)demanded.

Looking farther afield, similar problems and similar solutions are found when-
ever computer scientists want to cancel speculative evaluation or handle excep-
tions.

— The most important feature of exception and interrupt handling mecha-
nisms is the ability to specify how to clean up shared state. In imperative
languages, is necessary to write your own cleanup code since the language
cannot be expected to know how to restore your program to a consistent
state. This is not necessary in the pure subset of Haskell (i.e., the part of
Haskell where black-holing is used) because the the lack of side-effects limits
the problems to those introduced by the implementation. In the imperative
subset of Haskell, the programmer must write their own cleanup code we
recently added exception-handling to Haskell for this purpose [10,11].

— Multiscalar processors perform a considerable amount of speculative evalu-
ation and must clean up their internal state when a speculative evaluation
is terminated. For example, Breach et al. [1] describe an architecture which
tracks dependencies between different stages of the processor. Terminating
one stage automatically terminates those stages which have used values pro-
duced by the terminating stage. Like our technique, cleanup is performed
automatically; unlike our approach work done by the stage is discarded to
undo side-effects (and also to conserve resources).

7 Conclusions

The Spineless Tagless G-Machine is an efficient graph-reduction machine which
stores the spine of the graph on the stack (rather than storing it on the heap)
and which uses black-holing to avoid the resulting space leak. This optimisation
comes at a cost: we can’t resume interrupted evaluations because black-holing
assumes that thunks are only entered once. We have shown that this problem
can be resolved efficiently by restoring the spine of the graph to the heap and
we have outlined how it interacts with a range of extensions to the language and
to the implementation.

Acknowledgements We are grateful to Simon Peyton Jones, Simon Marlow
and John Peterson for comments on our approach and on this paper and to
Paul Hudak and Greg Hager whose interest in programming robots in Haskell
helped motivate this work. We are also grateful to the anonymous referees for
their interesting and useful feedback — we found the pointers to related work
outside the Haskell community particularily intriguing.

References

1.

10.

11.

12.

13.

14.

15.

S. Breach, T. N. Vijaykumar, and G. S. Sohi. The anatomy of the register file in
a multiscalar processor. In 27th Annual International Symposium on Microarchi-

tecture (MICRO-27), pages 181 190. ACM press, 1994.

. M. Chakravarty. Lazy thread and task creation in parallel graph-reduction. In

Proceedings of IFL’97, volume 1467 of Lecture Notes in Computer Science, pages
231 249. Springer Verlag, September 1997.

R. J. M. Hughes. The Design and Implementation of Programming Languages.
PhD thesis, Oxford University, 1984.

. R. J. M. Hughes. Parallel functional languages use less space. In Symposium on

Lisp and Functional Programming, Austin, 1984.
M. Jones. The implementation of the Gofer functional programming system. Re-
search Report YALEU/DCS/RR-1030, Yale University, May 1994.

. R. E. Jones. Tail recursion without space leaks. Journal of Functional Program-

ming, 2(1):73 79, January 1992.

J. S. Mattson Jr. and W. G. Griswold. Speculative evaluation for parallel graph
reduction. In Parallel Architectures and Compilation Techniques, pages 331-334.
North-Holland, August 1994.

S. Peyton Jones. Implementing lazy functional languages on stock hardware: the
Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127-202,
April 1992.

S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Principles of
Programming Languages, pages 295-308. ACM press, January 1996.

S. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and F. Henderson. A semantics
for imprecise exceptions. In Programming Languages Design and Implementation.
ACM press, May 1999.

A. Reid. Handling Exceptions in Haskell. Research Report YALEU/DCS/RR-
1175, Yale University, Department of Computer Science, August 1998.

C. Runciman and D. Wakeling. Heap profiling of lazy functional programs. Journal
of Functional Programming, 3(2):217 246, April 1993.

J. Sparud. Fixing some space leaks without a garbage collector. In Proc. Conference
on Functional Programming Languages and Computer Architecture. ACM, 1993.
P. Trinder, K. Hammond, J. Mattson Jr, A. Partridge, and S. Peyton Jones. GUM:
a portable parallel implementation of Haskell. In Programming Languages Design
and Implementation, pages 79-88. ACM press, 1996.

P. L. Wadler. Fixing a space leak with a garbage collector. Software Practice
and Ezperience, 17(9):595-608, 1987.

