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Abstract

The Haskell programming language has a very simple yet elegant view of data struc-
tures. Unfortunately, this minimalist approach to data structures, in particular record-
like structures, presents serious software engineering problems. We have implemented
an extension to standard Haskell which provides record-like structures in addition to
ordinary algebraic data types. Our extension provides named fields in data structures,
default field values, field update functions, detection of uninitialized slots and multiple
inheritance. Our major design goal was to supply as much functionality as possible
without changing any of the basic components of the Haskell language (in particular,
we avoided further complication of the type system). The purpose of this paper is not to
advocate this specific extension to Haskell, but to examine the basic engineering issues
associated with records; describe our experiences with the implementation and use of
one particular proposal; and consider alternative approaches (some of which have been
used in other languages).

1 Introduction

The Haskell language [2] includes only the most basic support for a fundamental program-
ming language feature: the record type. In the most general sense of the term, a record
simply groups a heterogeneous collection of objects into a single value. There are many
different manifestations of record-like features in programming languages, including tuples,
structures, and objects. While the algebraic data types found in Haskell have the necessary
functionality to build record data structures, Haskell lacks many desirable features found
in other languages for dealing with complex data objects.

This paper describes our implementation of record types in the Yale Haskell system. The
purpose of this experiment is not to advocate any specific implementation of records in
Haskell, but to fully explore one possible approach to this problem and to gain practical
experience with the problem of integrating records with the Haskell programming style.
After presenting our implementation, we compare our system of records to those found in
other languages and discuss alternatives to our design.



Before proceeding, we will clarify our terminology. We use the term record in only the most
general sense. The components of records are fields. Within the context of our specific
proposal, we use the terms structure and slot to denote our particular implementation of
records and fields (respectively).

The issues of concern here are not so much in the fundamental language semantics, but
instead are matters of engineering. From a software engineering standpoint, the record
structures provided by a programming language benefit from the following properties:

e Expandability. Adding a new field to a record should not require modification of
code which references old fields. It should be possible to new fields silently without
changing existing code.

e Reusability. A record should be able to include (inherit) other records; operations
which apply to the included records should also apply the including record.

e Efficiency. Basic record operations must be extremely efficient; there must be no
hidden performance costs.

e Privacy. The program must be able to hide the internal details of a record.

Along with these engineering issues, we have one further goal: to keep our system as much
in the spirit of standard Haskell as possible.

The basic features of our proposal are:

e The semantics are entirely defined via a translation to standard Haskell. No modifi-
cations are required in the Haskell type system.

e Slots may be accessed via pattern matching or by function application.
e Slots may be (functionally) updated.

e Default values may be provided for slots.

e Uninitialized slots can be detected by the programmer.

e Special syntax is used for creating, updating, coercing, etc. This avoids generating
new names for these operations (as is done in Common Lisp [6]).

e Explicit declarations are required for all record types. This avoids the efficiency and
type-inference problems associated with more general record types and produces more
accurate messages when type errors occur.

e Structures may be polymorphic.

e Multiple inheritance is allowed. Inheritance is implemented using Haskell’s type class
mechanism; structure operations and user-defined functions are overloaded to allow
them to apply to any structures defining appropriate fields. Coercion functions are
provided to move up and down the inheritance graph.



2 Data structuring in standard Haskell

Before presenting our proposal, we explore what can be done in standard Haskell. This both
illustrates the need for improvement and provides the basis for describing the semantics of
our proposal.

For example the following datatype which is used to represent named entities within the
Yale Haskell compiler.

data Definition =

MkDef
String —-— name
String —-— module in which it is defined
String -- unit in which it is defined
Bool -- is it exported?
Bool -- is it a PreludeCore symbol?
Bool -- is it a Prelude symbol?
Bool -- is it created by an interface?
Bool -- is it ‘‘made up’’ by the compiler?
(Maybe SrcLoc) -- where it was defined.

This datatype is hard to use reliably. There are several fields of the same type the
type system is not able to detect simple errors such as accidentally swapping the fourth
and fifth fields. Such problems are very difficult to spot when fields are identified only by
their position with respect to a constructor. It is also hard to maintain: adding an extra
field to this definition requires changes to every use of the constructor MkDef (i.e. taking
Definitions apart in patterns and constructing Definitions in expressions.)

The usual solution to the problem of reliably handling many fields is to define “access
functions” for updating and selecting each field of the record. For this example, we must
define 18 different access functions — one to extract each slot and one to update each slot:

getName, getModule, getUnit :: Definition -> String

getName  (MkDef nm _ _ _ _ _ _ _ _ ) =nmm

getModule (MkDef _ mod _ _ _ _ _ _ _ ) = mod

getUnit (MkDef _ _ unit _ _ _ _ _ _ ) = unit

setName, setModule, setUnit :: String -> Definition -> Definition

setName nm (MkDef _ mod unit isEx isCore isPrel isIface isInternal loc)
= (MkDef nm mod unit isEx isCore isPrel isIface isInternal loc)
setModule mod (MkDef nm _ unit isEx isCore isPrel isIface isInternal loc)
= (MkDef nm mod unit isEx isCore isPrel isIface isInternal loc)
setUnit unit (MkDef nm mod _ isEx isCore isPrel isIface isInternal loc)

= (MkDef nm mod unit isEx isCore isPrel isIface isInternal loc)

!The Yale Haskell compiler is written in Lisp; this example is obtained by translating from Lisp to Haskell.
Similar examples occur in the Glasgow Haskell compiler which s written in Haskell.



Using these access functions instead of referencing the constructor MkDef directly results
in more readable code and simplifies the task of adding new fields to a record. However,
the reader will appreciate that creation of these access functions is a somewhat tedious and
error-prone task.

A further problem with this approach is that it is no longer possible to use pattern matching
to extract components of records. This makes programs more verbose.

3 Syntactic Support for Records

The core of our proposal is to provide special syntax for defining structure types, accessing
slots, and initializing structures. The semantics of our proposal is defined as a translation
into code like that given in the previous section.

The additions to Haskell syntax rules (appendix B of [2]) are as follows:

3.1 Structure declarations

topdecl — structure [ ~ | simple where { structbody | ; | } [ deriving ( tyclses ) |
simple —  tycon tyvary ...tyvarg

structbody — —  structsigns | ;valdefs |

structsigns —  structsigny ;... ;structsigny,

structsign ~ —  wvars :: [ context => | type

Using this syntax, the datatype and access functions in section 2 can be more concisely

defined by

structure “Definition where

name, moduleName, unit :: String
isExported, isCore, isPrelude :: Bool
fromInterface, isInternalDef :: Bool

definedIn :: Maybe Sourceloc

(The “twiddle” is related to inheritance and is described in section 4.1.)

The selector functions have exactly the same name as the slot they extract; for example,
the following function prints the original name of a definition:

showDefName :: Definition -> ShowS
showDefName d
= showString (moduleName d) . showChar ’.’ . showString (name d)



Translation: The declaration
structure ~S t;...1; where
VLt ULy ee. 3 Um ti Um
vl = ity ... 3 Ui = tnity
is equivalent to the type declaration and function declarations
data S t1...tp = MES w1 ... up,
v it Stl...tk =-> ux
vy (MES 21 ... zm) = 21
U+t St tp => up
Uy (MES 21 ... Tm) = Ty
(The meaning of the default values (v;1 = init1; ... ; vy = inity,) is defined
below; the meaning of omitting the “twiddle” () is defined in section 4.1.)

Note: Although we define the semantics of our system by translation into standard Haskell,
the constructor M kS used in this translation is not made directly available to the program-
mer.

3.2 Pattern Matching

apat — ( spaty , ..., spat, ) (structure pattern, n > 1)
spat  —  war = pat
An alternative way of extracting slots is by pattern matching. Structure patterns consist

of a list of pairs of slot-names and patterns. For example, the function showDefName could
be written as:

showDefName :: Definition -> ShowS
showDefName (moduleName = m, name = nm)
= showString m . showChar ’.’ . showString nm

The order in which slot names are listed does not matter. Pattern matching proceeds left
to right as in all other patterns.

Translation: The expression case ey of (sl = p1, ... sn = p,) > e; _ =>
¢’ , for slot names s1, ... sn, is equivalent to:

let {y=¢€ } in

case ¢y of { MkS z; ... xp —>
case 74 of { p1 -> ... case x4y of { pp, > e ; - >y} ...
- >y

H

where y, 1 ...z, are new variables and z, is the value of the slot named s.




3.3 Updates

aexp —  (wvar =) (update section)
| Cupdy , ..., updy ) (update function, n > 1)
upd —  wvar = exp

For each slot s :: ¢ of a structure S, the update section (s=) is a function of typet - S — S
which copies the structure updating the value of the slot s. The value to be placed in the
slot can be placed inside the parenthesis, as in (name = "foo0"). More than one slot can
be updated at once, as in (name = ".", moduleName = "Prelude").

Translation: Given the structure declaration
structure ~S t;...{; where

VI 1D ULy ... 3 U i U
vi1 = ity ... 3 Uip = inity,
the notation (v; =) is equivalent to:

\ x (MES 1 ... 2 ... ) => (MES 1 ...z ... Tp))
and the notation (v;; = e, ...v;,, = e,) is equivalent to:

(\ s > (=) eg (... (Wip=) €, 8§ ... ))

The order in which slot names are listed does not matter; but it is a static error to use the
same slot name more than once.

3.4 Structure Creation

There is no special syntax for structure creation. The structure name is used as a modified
data constructor: instead of being applied to the component values, this constructor applies
an update function to an initial value constructed from the defaults specified in the structure
declaration.

For example, the function mkCoreDef creates a PreludeCore definition. The list of slot
names and values is an update function as defined in the previous section and Definition
is a function which applies the update function to an “empty” structure in which each slot
is undefined (there are no default slot values declared in this example).

mkCoreDef :: String -> Sourceloc -> Definition
mkCoreDef nm src = Definition (
name = nm,
moduleName = "PreludeCore",
isExported = True,
isCore = True,
isPrelude = True,
fromInterface = False,
definedIn = src

)



The syntax for declaring structures allows default values to be specified for some of the slots.
A straightforward approach would require the default value of each slot to have the same
type as the slot. For example, one might add the following default values to the structure
declaration.

isExported = False
isCore = False
isPrelude = False
fromInterface = False
definedIn = Nothing

However, by making the default a function mapping the structure being defined onto a
slot value it becomes possible for default values to depend on the values of other slots —
particularly those of explicitly-initialized slots. For example, the values of the slots isCore
and isPrelude can be made to depend on the value of the moduleName slot.

isExported self = False

isCore (moduleName = mod) = mod == "PreludeCore"
isPrelude (moduleName = mod) = take 7 mod == "Prelude"
fromInterface self = False

definedIn self = Nothing

The implementation of this style of default argument is somewhat subtle: we use a recursion
to allow explicitly initialized slots to override default values and to allow default values to
depend on other slots in the same structure.

Translation:
For a structure type constructor S, the occurrence of the type constructor S in an
expression is equivalent to the function

\init -> let s = init ((vq = inity s, ..., v, = init, s) (MES L...1)
in s)

where the default values for variables vy, ..., v, are inity,...,init, (respectively).

It is a static error to provide more than one default value for a slot. Uninitialized slots with
no default are bound to error calls.

Strictness annotations in data type definitions cause problems with initialization: an unini-
tialized structure slot would immediately cause a program error. Qur solution is that strict
slots must have a default value and that default value should have the same type as the
slot (rather than being a function whose argument is the structure being created). This
constant is used instead of L in the above translation.



3.5 Uninitialized Slots

Slots which have no default value may remain uninitialized by structure creation. While
accessing such slots results in a runtime error, it is sometimes useful to test whether a slot
is initialized without actually referencing its value. It is, of course, possible to avoid this by
adopting the convention that every slot must have a default value. On the other hand, by
allowing uninitialized slots to be detectable, a robust derived Text instance for structures
can simply skip over uninitialized slots instead of crashing when attempting to access such
a slot.

The changes to the translation are straightforward but tedious: the datatype
data S t1...tp = MES w1 ... upy

is changed to

data S t1...tp = MES (Maybe wu1) ... (Maybe uy,)

The definition of selector functions and update sections are modified to accommodate this
change

v; (MES z1 ... (Just z;) ... ) = ;
(v; =) =\ x (MkS 21 ... z; ... Tp) => (S z1 ... (Just z) ... zy)

and (in the absence of an explicit default) the default value of every slot is changed from L
to Nothing.

Translation: Given the structure declaration
structure ~S f;...{; where

Ul ot UL ee. 3 U D Uy
Vi1 = ity ... 3 Uip = inat,
the notation (= v;) is equivalent to:
(\ (MES z1 ... x; ... Ty) —>
case z; of { Just _ -> True; Nothing -> False })

This translation is rather inefficient imposing an overhead on creation, selection and
updates. Fortunately, it is easy to detect undefined slots without an explicit Maybe datatype
in the representation. To produce meaningful error messages, each potentially undefined
slot is already associated with a particular error thunk. Instead of wrapping the slot value
up in the Maybe data type, the definedness check simply compares the slot value with the
associated error thunk using pointer equality.

4 Adding Inheritance

It is possible to extend this translation further to allow a structure to inherit slots from
other structures. For example, one might define variables which are just like definitions but



provide additional slots to store the type, signature, fixity, definition, etc of the variable.
We extend the syntax slightly to specify which structures slots are being inherited from.

topdecl — structure tycony,... ,tycon, => [~ | tycon where
{ structbody [ ; ] } [ deriving ( tyclses ) ] (n>1)

For example, to define a type Variable which inherits slots from the type Definition, we
write:

structure Definition => Variable where
varType :: Signature
varSignature :: Maybe Signature
fixity :: Fixity
definition :: Expression

The major change required to make this work is that the functions to select slots and update
structures must be overloaded [9]. That is, instead of translating a structure definition into
just a datatype and a collection of slot selection and update functions, structure definitions
are translated into a type class with selection and update functions as methods, a new
datatype and an instance of the datatype for that class. We use the same name for the
type its corresponding class — this would normally be a syntax error since Haskell does not
allow types and classes to share names.

For example, the definition of the structure Definition must be changed to define a type
class (also called Definition) with methods

name, moduleName, unit :: Definition a => a -> String

(name=), (moduleName=), (unit=) :: Definition a => String -> a -> a

The old definition of the access functions is used to define an instance of the class Definition
at the type Definition.

Similarly, the definition of the type Variable is used to define a type class Variable, and
a data type Variable which is an instance of both Definition and Variable.

A structure may be either narrowed to a contained structure or widened to a containing
structure. Widening is accomplished by adding undefined slots to the value. For a structure
type S, the function (-> S) narrows a value from any type which includes S onto S and the
function (S ->) widens a value of type S into any type containing S. The types of these
operators are:

(->8) :: Sa=>a->8
(S ->) :: Sa=>8->a



Translation:
instance S S’ where

(> 8) (MKS" zy ... z,) = MkS ny ... n;

(S ->) (MES z1 ... zp) = MES" wi ... w,
where n; is the z in the corresponding slot and w; is the corresponding z when
the slot is part of S or L otherwise.

For simplicity, widening does not invoke the defaulting mechanism to fill the new slots added
by widening.
The most difficult change is in pattern matching. Since we do not know the exact type of

the structure, the translation given in section 3.2 is no longer valid. The translation we
implemented is:

Translation: The expression case ey of (sl = py, ... sn = p,) > e; _ ->
e, for slot names s1, ... sn, is equivalent to:

let { z = ey; y =€ } in
case sl y of { p1 -=> ... case snz of { p, >e ; - >y} ...
_=>uy}

where z, y, T1 ...z} are new variables and x4 is the value of the slot named s.

This translation has the drawback that it may occasionally cause a space leak if any p;
is irrefutable. The problem is exactly that reported by Wadler [7]: slot extraction is only
performed when the value of the slot is actually required; not when the pattern matching
occurs. This can cause the entire structure to be retained when only one slot is required.

The following alternative translation would eliminate this space leak, but may make over-
loaded pattern matching more expensive. (This translation is for single inheritance. Ex-
tending it to handle multiple inheritance is straightforward but tedious.)

Alternative translation: If ¢y has type S’ @ = «, and S’ has slots s1, ... sn, the
expression case ey of (sl = p;, ... sn = p,) -> e; _ -> €' . is equivalent
to:

let { £ = ¢y; y =€ } in

case (->S') z of { MkS’ z; ... zp —>
case 74 of { p1 -> ... case x4, of { pp, > e ; - >y} ...
- >y

H

where z, y, T1 ...z} are new variables and x4 is the value of the slot named s.
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4.1 Avoiding Inheritance

Inheritance is a powerful tool but its use presents two problems:

1. Since inheritance is implemented with the class system, using inheritance involves the
same overhead that overloading functions entails. This overhead consists of both the
instances needed to define an operation over a set of data types and the extra level of
indirection needed to call overloaded functions. While the execution time overhead can
be eliminated using type signatures to eliminate overloading, this is very burdensome
for the programmer.

2. Inheritance also may prevent early detection of some errors. For example, given two

structures
structure S1 where al, bl :: Int
structure S2 where a2, b2 :: Int

f (al =x,b2=y) =x+y

The definition of £ is almost certainly incorrect since its argument must contain slots
from two different structure types. However, this does not cause a type error since
a third structure may later be declared (perhaps in a separately-compiled module)
which includes both S1 and S2.

On the other hand, a type error does occur if we try to apply £ to an argument of
type S1 (which is probably what the programmer intended to do.)

If S1 had not been overloaded, this error would have been caught when f was declared.
(Providing the type signature £ :: S1 -> Int would also have caught this error.)

We thus make inheritance optional: a structure declaration may indicate that the declared

structure will not be inherited by any other structure. This is accomplished using a ~ in
front of the structure name in the declaration:

structure S1 => “S2 where s :: Int

The ~ prevents S2 from being used as a class and allows any use of the slot s to precisely
determine the typing of an update or pattern.

4.2 Multiple Inheritance and Defaulting

The Haskell type class system allows a class to have multiple superclasses. Since structures
are translated into type classes, our translation naturally allows multiple inheritance: a
structure is allowed to inherit slots from any set of other structures.

In the type class system, defaults can only apply to methods directly associated with a class,
not those inherited from superclasses. This avoids ambiguity over which default to apply
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when the same method is inherited via several routes (e.g. the standard class Integral
inherits Ord via both the Ix class and the Real class).

We have chosen to relax this rule for structures. Structure declarations may define default
methods for inherited slots. The following rule is used to avoid ambiguity:

If a structure inherits a slot s, it may either define a new default for s or use
the default associated with the first structure in the list of included structures
containing s.

4.3 The Polymorphic Inheritance Problem

The reader may have noticed that the syntax for structure declarations does not allow both
polymorphism and inheritance. This is to avoid the following limitation of Haskell’s type
system.

The declarations generated by:

structure S1 a where
sl :: a

structure S2 b where
s2 :: b

structure S1 a, S2 b => S3 a b

would be:

data S1 a = MkS1 a
data S2 b = MkS2 b
data S3 a b = MkS3 a b

class S1 s where
sl :: s a->a

class S2 s where
s2 :: sb ->Db

-— instances for S1, S2 omitted
instance S1 (S3 b) where
sl (MkS3 x _) =x

instance S2 (S3 a) where
s2 (MkS3 _ x) = x

This “class declaration” is not legal Haskell since the type variable s must be instantiated
with a type constructor rather than a type. This may appear to be legal using constructor
classes, but the instance declaration for S1 will still not work.

For now we simply prohibit the inheritance of polymorphic structures but allow polymorphic
structures and unrestricted inheritance of non-polymorphic structures. It remains to be seen
whether this is excessively restricting in real programs.
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5 Alternatives and Related Work

Our system is an experiment, not a finished product. Having the experience of carrying
an implementation all the way through and using it on a number of real applications,
including the Yale debugger and a prototype GUI system, we can assess our design and
consider alternatives.

5.1 The Namespace Issue

Our placement of slot names into the value namespace is a significant difference from lan-
guages such as C, Pascal, or ML. Using a separate namespace for each structure in the
manner of C is not possible, however, because this depends on a bottom-up style of type
inference which determines which type of structure is involved before resolving field names.

In practice, we have found that placing selector functions in the value namespace makes it
almost essential to use long field names. For example, the structure Point defined by

structure “Point where x, y :: Int

introduces two top-level function names x and y which the programmer is likely to want to
use for other purposes. We adopted the convention of using the structure name as a prefix
for the field name. For example, we would normally choose slot names pointX and pointY
instead of x and y.

This problem could be reduced by providing special syntax for selector functions  avoiding
the need to place selector functions in the value namespace— but this would not completely
avoid the problem: all slot names would still be in the same namespace.

A more radical solution is used in ML which allows “labels” to be shared among different
records. These labels do not carry typings in the same way the slot names do. Instead,
they simply attach names to tuple components. Implementing records using shared labels
would require significant changes to the syntax and further complicate the type system.

5.2 Default values

In our experience, some sort of defaulting mechanism is essential. This allows new fields to
be inserted into a structure without changing all references to the associated constructor.
Although not often used, the expressiveness of mutually recursive slot initialization can be
very useful and seems to be more in the Haskell spirit than restricting defaults values to
constants or imposing some sort of evaluation order on the default computation.

5.3 Uninitialized Slots
Though easy to implement, the ability to detect uninitialized structure slots is somewhat

dubious. To date, our only use of this feature has been to allow the derived Text instances
for structures to skip over uninitialized slots.
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The need to detect uninitialized slots could be eliminated by making it impossible to leave
a slot uninitialized. This could be done by changing the syntax of structure creation to
require a list of slot names and values (rather than allowing any expression of the right
type). It would then be possible for the compiler to check that every slot had either a
default value or an explicitly provided value. A similar restriction is imposed in ML [3],
where it is required by the combination of strict semantics and type safety.

5.4 Pattern Matching

Pattern matching in Haskell lacks the extensibility of other language features. It would
certainly be better to add a general purpose mechanism flexible enough to define structure
pattern matching than to add structure pattern matching as a special case, as in our im-
plementation. Sadly, Wadler’s “views” [8, 1] would not be flexible enough to handle this
case.

In practice, we found that we didn’t use pattern matching very much, preferring to use
selector functions to extract slots at the place where they are needed rather than at the
head of a function. This may be caused by a number of factors: our familiarity with
this style of programming from other languages that support records; our use of long field
names (section 5.1); the fact that structure pattern matching is generally not connected
with control flow; or our use of structures in big, complicated programs that solve real
problems instead of in highly polished classroom examples.

5.5 Allowing Polymorphic Inheritance

There appears to be a simple extension to constructor classes which would allow polymor-
phic inheritance. The problem with constructor classes is that only those types which are
curried applications of a type constructor are available. Thus, for a type T a b, constructor
classes can make use of T, T a, and T a b as types. Expanding the implicit currying, these
types are \a b -> T a b, \b -> T a b, and T a b. Unfortunately, polymorphic inheri-
tance requires a type such as \a -> T a b. We conjecture that adding a limited lambda
to the type language is possible: this lambda is needed only to permute the arguments to
the type constructors.

5.6 Syntax Issues

Using similar syntax for update functions (which are functions) and structure patterns
(which match data values) is somewhat irregular. In hindsight, it would be possible to drop
the parenthesis in single update functions and to drop multiple update functions. Where
one currently writes update functions such as (moduleName = m, name = nm), one would
instead write (moduleName = m . name = nm).

Our use of special syntax such as (s=), (=s), (-> 8) and (S ->) is somewhat contorted.
An alternative would be to indulge in name mangling (deriving one name from another) as
in Common Lisp. (For example, the function setFoo would be used to alter the values of
slot foo.) However, no other Haskell feature uses name mangling so we hesitate to add this.
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5.7 Record Types

An entirely different system can be constructed using labeled records and subtype infer-
ence [5, 4]. The advantage of such as system would be that structure declarations would
be unnecessary. While type systems have been proposed featuring subtyping based on ex-
tensible records, these have two disadvantages: these require a fundamental change to the
Haskell type system and it may be difficult to generate efficient record operations using
these systems.

5.8 Generalizing to Arbitrary Datatypes

The structures considered in this proposal are just syntactic sugar for tuples; but, Haskell’s
datatypes allow one to define a “sum of tuples”. It would be straightforward to adapt
the inheritance-free translation in section 3 to allow one to define field names for arbitrary
datatypes. For example, given the datatype:

data Expr = Lambda (arg :: Var) (body :: Expr)
| App (fun :: Expr) (arg :: Expr)
|

Var (v :: Var)
one could use pattern matching such as:

eval env (Lambda (arg = v, body = e)) = \x. eval ((v,x):env) e
eval env (App (fun = f, arg = a)) (eval env f) (eval env a)

eval env (Var (v = x)) lookup env x

5.9 Object-Oriented Programming

The ability to inherit structure slots is a step toward a more object-oriented programming
paradigm. However, when we used our structure system in a GUI system in an object-
oriented style, a number of deficiencies became obvious.

First, the classes defined for structures contain only slot accessing functions. To add other
class methods (as with C4++ virtual functions), we were forced to add an extra class for
each structure type. That is, for a structure S (which defines a class S), we added the
class S => S’ to hold methods associated with structures inheriting from S. This was very
unsatisfactory it would be much nicer to be extend structure definitions to directly
include these methods.

Dynamic binding, which would allow methods (dictionaries) to be attached directly to data
values, is not available in Haskell without some sort of existential typing. This makes
non-homogeneous lists impossible in standard Haskell.

The coercion functions were very useful — these allow objects to be moved up or down the
class hierarchy so as to dispatch methods associated with other types.

A more general object-oriented extension to Haskell would eliminate the need for slot in-
heritance at the structure level. Provided any extra overhead could be eliminated by the
compiler, such an extension may be preferable to using the inheritance mechanism described
here.

15



5.10 Code Generation
We have found that three factors significantly affect the quality of the generated code:

1. Inlining selection and update functions eliminates a function call and allows further
optimizations to be performed. Inlining the initialization function avoids constructing
and destructuring many partial records.

2. Using pattern matching on function arguments produces code that is both more ef-
ficient and less likely to leak space than if selector functions are used. The reason is
simple: pattern matching is performed when the function is called whereas selection
functions are only executed when the selected value is evaluated. Exactly the same
difference occurs if programmers use pattern matching on lists instead of head and
tail.

3. Avoiding overloading (whether by shunning inheritance or by providing explicit type
signatures) eliminates dictionary lookups and allows selection and update functions
to be inlined.

Restricting ourselves to single inheritance would allow a more efficient implementation
of inheritance: inherited slots could be placed at the same offset from the start of a
structure as in their parents allowing exactly the same code sequence to be used for
selecting a slot — no matter what it’s type. This optimisation would eliminate the
need to pass dictionaries around; greatly improving performance.

By choosing the best options (inline structure operations, use pattern matching and avoid
overloading), we are able to generate exactly the same code as if no abstraction mechanisms
had been used.

6 Conclusions

Our experience of being able to name fields has been entirely positive — we feel that
it significantly improves the readability and maintainability of our programs. Having an
elegant notation for updates is also very useful. Programs using these features are easier to
maintain and the code is very readable.

The best way to deal with inheritance is not yet known. A more advanced object-oriented
extension to Haskell may provide the same capabilities we have implemented. Simplifying
to a single inheritance style would eliminate the performance problems introduced through
the use of the class system.

Much of the implementation baggage could be eliminated by removing non-constant defaults
and inheritance. This would make structure creation trivial: an update is applied to a
structure containing the constant defaults. No class or instance declarations would be
generated by structures; only data declarations. No support functions would be required
— all structure operations could be expanded inline. Such a stripped-down system would
address many, but not all, of the engineering issues described earlier. At a minimum, such
a system should be considered for Haskell 1.3.
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