
Adding Records to HaskellJohn Peterson and Alastair ReidDepartment of Computer Science, Yale University,P.O. Box 208285, New Haven, CT 06520, USA.Electronic mail: fpeterson-john,reid-alastairg@cs.yale.eduOctober 4, 1998AbstractThe Haskell programming language has a very simple yet elegant view of data struc-tures. Unfortunately, this minimalist approach to data structures, in particular record-like structures, presents serious software engineering problems. We have implementedan extension to standard Haskell which provides record-like structures in addition toordinary algebraic data types. Our extension provides named �elds in data structures,default �eld values, �eld update functions, detection of uninitialized slots and multipleinheritance. Our major design goal was to supply as much functionality as possiblewithout changing any of the basic components of the Haskell language (in particular,we avoided further complication of the type system). The purpose of this paper is not toadvocate this speci�c extension to Haskell, but to examine the basic engineering issuesassociated with records; describe our experiences with the implementation and use ofone particular proposal; and consider alternative approaches (some of which have beenused in other languages).1 IntroductionThe Haskell language [2] includes only the most basic support for a fundamental program-ming language feature: the record type. In the most general sense of the term, a recordsimply groups a heterogeneous collection of objects into a single value. There are manydi�erent manifestations of record-like features in programming languages, including tuples,structures, and objects. While the algebraic data types found in Haskell have the necessaryfunctionality to build record data structures, Haskell lacks many desirable features foundin other languages for dealing with complex data objects.This paper describes our implementation of record types in the Yale Haskell system. Thepurpose of this experiment is not to advocate any speci�c implementation of records inHaskell, but to fully explore one possible approach to this problem and to gain practicalexperience with the problem of integrating records with the Haskell programming style.After presenting our implementation, we compare our system of records to those found inother languages and discuss alternatives to our design.1



Before proceeding, we will clarify our terminology. We use the term record in only the mostgeneral sense. The components of records are �elds. Within the context of our speci�cproposal, we use the terms structure and slot to denote our particular implementation ofrecords and �elds (respectively).The issues of concern here are not so much in the fundamental language semantics, butinstead are matters of engineering. From a software engineering standpoint, the recordstructures provided by a programming language bene�t from the following properties:� Expandability. Adding a new �eld to a record should not require modi�cation ofcode which references old �elds. It should be possible to new �elds silently withoutchanging existing code.� Reusability. A record should be able to include (inherit) other records; operationswhich apply to the included records should also apply the including record.� E�ciency. Basic record operations must be extremely e�cient; there must be nohidden performance costs.� Privacy. The program must be able to hide the internal details of a record.Along with these engineering issues, we have one further goal: to keep our system as muchin the spirit of standard Haskell as possible.The basic features of our proposal are:� The semantics are entirely de�ned via a translation to standard Haskell. No modi�-cations are required in the Haskell type system.� Slots may be accessed via pattern matching or by function application.� Slots may be (functionally) updated.� Default values may be provided for slots.� Uninitialized slots can be detected by the programmer.� Special syntax is used for creating, updating, coercing, etc. This avoids generatingnew names for these operations (as is done in Common Lisp [6]).� Explicit declarations are required for all record types. This avoids the e�ciency andtype-inference problems associated with more general record types and produces moreaccurate messages when type errors occur.� Structures may be polymorphic.� Multiple inheritance is allowed. Inheritance is implemented using Haskell's type classmechanism; structure operations and user-de�ned functions are overloaded to allowthem to apply to any structures de�ning appropriate �elds. Coercion functions areprovided to move up and down the inheritance graph.2



2 Data structuring in standard HaskellBefore presenting our proposal, we explore what can be done in standard Haskell. This bothillustrates the need for improvement and provides the basis for describing the semantics ofour proposal.For example the following datatype which is used to represent named entities within theYale Haskell compiler.1data Definition =MkDefString -- nameString -- module in which it is definedString -- unit in which it is definedBool -- is it exported?Bool -- is it a PreludeCore symbol?Bool -- is it a Prelude symbol?Bool -- is it created by an interface?Bool -- is it ``made up'' by the compiler?(Maybe SrcLoc) -- where it was defined.This datatype is hard to use reliably. There are several �elds of the same type | thetype system is not able to detect simple errors such as accidentally swapping the fourthand �fth �elds. Such problems are very di�cult to spot when �elds are identi�ed only bytheir position with respect to a constructor. It is also hard to maintain: adding an extra�eld to this de�nition requires changes to every use of the constructor MkDef (i.e. takingDefinitions apart in patterns and constructing Definitions in expressions.)The usual solution to the problem of reliably handling many �elds is to de�ne \accessfunctions" for updating and selecting each �eld of the record. For this example, we mustde�ne 18 di�erent access functions | one to extract each slot and one to update each slot:getName, getModule, getUnit :: Definition -> StringgetName (MkDef nm _ _ _ _ _ _ _ _) = nmgetModule (MkDef _ mod _ _ _ _ _ _ _) = modgetUnit (MkDef _ _ unit _ _ _ _ _ _) = unit...setName, setModule, setUnit :: String -> Definition -> DefinitionsetName nm (MkDef _ mod unit isEx isCore isPrel isIface isInternal loc)= (MkDef nm mod unit isEx isCore isPrel isIface isInternal loc)setModule mod (MkDef nm _ unit isEx isCore isPrel isIface isInternal loc)= (MkDef nm mod unit isEx isCore isPrel isIface isInternal loc)setUnit unit (MkDef nm mod _ isEx isCore isPrel isIface isInternal loc)= (MkDef nm mod unit isEx isCore isPrel isIface isInternal loc)...1The Yale Haskell compiler is written in Lisp; this example is obtained by translating from Lisp to Haskell.Similar examples occur in the Glasgow Haskell compiler | which is written in Haskell.3



Using these access functions instead of referencing the constructor MkDef directly resultsin more readable code and simpli�es the task of adding new �elds to a record. However,the reader will appreciate that creation of these access functions is a somewhat tedious anderror-prone task.A further problem with this approach is that it is no longer possible to use pattern matchingto extract components of records. This makes programs more verbose.3 Syntactic Support for RecordsThe core of our proposal is to provide special syntax for de�ning structure types, accessingslots, and initializing structures. The semantics of our proposal is de�ned as a translationinto code like that given in the previous section.The additions to Haskell syntax rules (appendix B of [2]) are as follows:3.1 Structure declarationstopdecl ! structure [ ~ ] simple where f structbody [ ; ] g [ deriving ( tyclses ) ]simple ! tycon tyvar1 . . . tyvarkstructbody ! structsigns [ ;valdefs ]structsigns ! structsign1 ;. . .;structsignnstructsign ! vars :: [ context => ] typeUsing this syntax, the datatype and access functions in section 2 can be more conciselyde�ned bystructure ~Definition wherename, moduleName, unit :: StringisExported, isCore, isPrelude :: BoolfromInterface, isInternalDef :: BooldefinedIn :: Maybe SourceLoc(The \twiddle" is related to inheritance and is described in section 4.1.)The selector functions have exactly the same name as the slot they extract; for example,the following function prints the original name of a de�nition:showDefName :: Definition -> ShowSshowDefName d= showString (moduleName d) . showChar '.' . showString (name d)
4



Translation: The declarationstructure ~S t1 : : : tk wherev1 :: u1; ... ; vm :: umvi1 = init1; ... ; vin = initnis equivalent to the type declaration and function declarationsdata S t1 : : : tk = MkS u1 ... umv1 :: S t1 : : : tk -> u1v1 (MkS x1 ... xm) = x1...vm :: S t1 : : : tk -> umvm (MkS x1 ... xm) = xm(The meaning of the default values (vi1 = init1; ... ; vin = init in) is de�nedbelow; the meaning of omitting the \twiddle" (~) is de�ned in section 4.1.)Note: Although we de�ne the semantics of our system by translation into standard Haskell,the constructor MkS used in this translation is not made directly available to the program-mer.3.2 Pattern Matchingapat ! ( spat1 , . . ., spatn ) (structure pattern, n � 1)spat ! var = patAn alternative way of extracting slots is by pattern matching. Structure patterns consistof a list of pairs of slot-names and patterns. For example, the function showDefName couldbe written as:showDefName :: Definition -> ShowSshowDefName (moduleName = m, name = nm)= showString m . showChar '.' . showString nmThe order in which slot names are listed does not matter. Pattern matching proceeds leftto right as in all other patterns.Translation: The expression case e0 of (s1 = p1, ... sn = pn) -> e; ->e0 , for slot names s1, . . . sn, is equivalent to:let f y = e0 g incase e0 of f MkS x1 ... xk ->case xs1 of f p1 -> ... case xsn of f pn -> e ; -> y g ...-> yggwhere y, x1 . . .xk are new variables and xs is the value of the slot named s.5



3.3 Updatesaexp ! ( var =) (update section)j ( upd1 , . . ., updn ) (update function, n � 1)upd ! var = expFor each slot s :: t of a structure S, the update section (s=) is a function of type t! S ! Swhich copies the structure updating the value of the slot s. The value to be placed in theslot can be placed inside the parenthesis, as in (name = "foo"). More than one slot canbe updated at once, as in (name = ".", moduleName = "Prelude").Translation: Given the structure declarationstructure ~S t1 : : : tk wherev1 :: u1; ... ; vm :: umvi1 = init1; ... ; vin = initnthe notation (vi =) is equivalent to:(n x (MkS x1 ... xi ... xm) -> (MkS x1 ... x ... xm))and the notation (vi1 = e1, ...vin = en) is equivalent to:(n s -> (vi1=) e1 ( : : : (vin=) en s : : : ))The order in which slot names are listed does not matter; but it is a static error to use thesame slot name more than once.3.4 Structure CreationThere is no special syntax for structure creation. The structure name is used as a modi�eddata constructor: instead of being applied to the component values, this constructor appliesan update function to an initial value constructed from the defaults speci�ed in the structuredeclaration.For example, the function mkCoreDef creates a PreludeCore de�nition. The list of slotnames and values is an update function as de�ned in the previous section and Definitionis a function which applies the update function to an \empty" structure in which each slotis unde�ned (there are no default slot values declared in this example).mkCoreDef :: String -> SourceLoc -> DefinitionmkCoreDef nm src = Definition (name = nm,moduleName = "PreludeCore",isExported = True,isCore = True,isPrelude = True,fromInterface = False,definedIn = src) 6



The syntax for declaring structures allows default values to be speci�ed for some of the slots.A straightforward approach would require the default value of each slot to have the sametype as the slot. For example, one might add the following default values to the structuredeclaration....isExported = FalseisCore = FalseisPrelude = FalsefromInterface = FalsedefinedIn = NothingHowever, by making the default a function mapping the structure being de�ned onto aslot value it becomes possible for default values to depend on the values of other slots |particularly those of explicitly-initialized slots. For example, the values of the slots isCoreand isPrelude can be made to depend on the value of the moduleName slot....isExported self = FalseisCore (moduleName = mod) = mod == "PreludeCore"isPrelude (moduleName = mod) = take 7 mod == "Prelude"fromInterface self = FalsedefinedIn self = NothingThe implementation of this style of default argument is somewhat subtle: we use a recursionto allow explicitly initialized slots to override default values and to allow default values todepend on other slots in the same structure.Translation:For a structure type constructor S, the occurrence of the type constructor S in anexpression is equivalent to the functionninit -> let s = init ((v1 = init1 s, ..., vn = initn s) (MkS ? : : :?)in s)where the default values for variables v1; : : : ; vn are init1; : : : ; initn (respectively).It is a static error to provide more than one default value for a slot. Uninitialized slots withno default are bound to error calls.Strictness annotations in data type de�nitions cause problems with initialization: an unini-tialized structure slot would immediately cause a program error. Our solution is that strictslots must have a default value and that default value should have the same type as theslot (rather than being a function whose argument is the structure being created). Thisconstant is used instead of ? in the above translation.7



3.5 Uninitialized SlotsSlots which have no default value may remain uninitialized by structure creation. Whileaccessing such slots results in a runtime error, it is sometimes useful to test whether a slotis initialized without actually referencing its value. It is, of course, possible to avoid this byadopting the convention that every slot must have a default value. On the other hand, byallowing uninitialized slots to be detectable, a robust derived Text instance for structurescan simply skip over uninitialized slots instead of crashing when attempting to access sucha slot.The changes to the translation are straightforward but tedious: the datatypedata S t1 : : : tk = MkS u1 ... umis changed todata S t1 : : : tk = MkS (Maybe u1) ... (Maybe um)The de�nition of selector functions and update sections are modi�ed to accommodate thischangevi (MkS x1 ... (Just xi) ... xm) = xi(vi =) = n x (MkS x1 ... xi ... xm) -> (S x1 ... (Just x) ... xm)and (in the absence of an explicit default) the default value of every slot is changed from ?to Nothing.Translation: Given the structure declarationstructure ~S t1 : : : tk wherev1 :: u1; ... ; vm :: umvi1 = init1; ... ; vin = init inthe notation (= vi) is equivalent to:(n (MkS x1 : : : xi : : : xm) ->case xi of f Just -> True; Nothing -> False g)This translation is rather ine�cient | imposing an overhead on creation, selection andupdates. Fortunately, it is easy to detect unde�ned slots without an explicit Maybe datatypein the representation. To produce meaningful error messages, each potentially unde�nedslot is already associated with a particular error thunk. Instead of wrapping the slot valueup in the Maybe data type, the de�nedness check simply compares the slot value with theassociated error thunk using pointer equality.4 Adding InheritanceIt is possible to extend this translation further to allow a structure to inherit slots fromother structures. For example, one might de�ne variables which are just like de�nitions but8



provide additional slots to store the type, signature, �xity, de�nition, etc of the variable.We extend the syntax slightly to specify which structures slots are being inherited from.topdecl ! structure tycon1; : : : ; tyconn => [ ~ ] tycon wheref structbody [ ; ] g [ deriving ( tyclses ) ] (n � 1)For example, to de�ne a type Variable which inherits slots from the type Definition, wewrite:structure Definition => Variable wherevarType :: SignaturevarSignature :: Maybe Signaturefixity :: Fixitydefinition :: ExpressionThe major change required to make this work is that the functions to select slots and updatestructures must be overloaded [9]. That is, instead of translating a structure de�nition intojust a datatype and a collection of slot selection and update functions, structure de�nitionsare translated into a type class with selection and update functions as methods, a newdatatype and an instance of the datatype for that class. We use the same name for thetype its corresponding class | this would normally be a syntax error since Haskell does notallow types and classes to share names.For example, the de�nition of the structure Definition must be changed to de�ne a typeclass (also called Definition) with methodsname, moduleName, unit :: Definition a => a -> String...(name=), (moduleName=), (unit=) :: Definition a => String -> a -> a...The old de�nition of the access functions is used to de�ne an instance of the class Definitionat the type Definition.Similarly, the de�nition of the type Variable is used to de�ne a type class Variable, anda data type Variable which is an instance of both Definition and Variable.A structure may be either narrowed to a contained structure or widened to a containingstructure. Widening is accomplished by adding unde�ned slots to the value. For a structuretype S, the function (-> S) narrows a value from any type which includes S onto S and thefunction (S ->) widens a value of type S into any type containing S. The types of theseoperators are:(-> S) :: S a => a -> S(S ->) :: S a => S -> a
9



Translation:instance S S0 where...(-> S) (MkS0 x1 : : : xn) = MkS n1 : : : ni(S ->) (MkS x1 : : : xm) = MkS0 w1 : : : wjwhere ni is the x in the corresponding slot and wi is the corresponding x whenthe slot is part of S or ? otherwise.For simplicity, widening does not invoke the defaulting mechanism to �ll the new slots addedby widening.The most di�cult change is in pattern matching. Since we do not know the exact type ofthe structure, the translation given in section 3.2 is no longer valid. The translation weimplemented is:Translation: The expression case e0 of (s1 = p1, ... sn = pn) -> e; ->e0 , for slot names s1, . . . sn, is equivalent to:let f x = e0; y = e0 g incase s1 y of f p1 -> ... case sn x of f pn -> e ; -> y g ...-> y gwhere x, y, x1 . . . xk are new variables and xs is the value of the slot named s.This translation has the drawback that it may occasionally cause a space leak if any piis irrefutable. The problem is exactly that reported by Wadler [7]: slot extraction is onlyperformed when the value of the slot is actually required; not when the pattern matchingoccurs. This can cause the entire structure to be retained when only one slot is required.The following alternative translation would eliminate this space leak, but may make over-loaded pattern matching more expensive. (This translation is for single inheritance. Ex-tending it to handle multiple inheritance is straightforward but tedious.)Alternative translation: If e0 has type S0 �) �, and S0 has slots s1, . . . sn, theexpression case e0 of (s1 = p1, ... sn = pn) -> e; -> e0 , is equivalentto: let f x = e0; y = e0 g incase (->S0) x of f MkS' x1 ... xk ->case xs1 of f p1 -> ... case xsn of f pn -> e ; -> y g ...-> yggwhere x, y, x1 . . . xk are new variables and xs is the value of the slot named s.10



4.1 Avoiding InheritanceInheritance is a powerful tool but its use presents two problems:1. Since inheritance is implemented with the class system, using inheritance involves thesame overhead that overloading functions entails. This overhead consists of both theinstances needed to de�ne an operation over a set of data types and the extra level ofindirection needed to call overloaded functions. While the execution time overhead canbe eliminated using type signatures to eliminate overloading, this is very burdensomefor the programmer.2. Inheritance also may prevent early detection of some errors. For example, given twostructuresstructure S1 where a1, b1 :: Intstructure S2 where a2, b2 :: Intf (a1 = x, b2 = y) = x + yThe de�nition of f is almost certainly incorrect since its argument must contain slotsfrom two di�erent structure types. However, this does not cause a type error sincea third structure may later be declared (perhaps in a separately-compiled module)which includes both S1 and S2.On the other hand, a type error does occur if we try to apply f to an argument oftype S1 (which is probably what the programmer intended to do.)If S1 had not been overloaded, this error would have been caught when f was declared.(Providing the type signature f :: S1 -> Int would also have caught this error.)We thus make inheritance optional: a structure declaration may indicate that the declaredstructure will not be inherited by any other structure. This is accomplished using a ~ infront of the structure name in the declaration:structure S1 => ~S2 where s :: IntThe ~ prevents S2 from being used as a class and allows any use of the slot s to preciselydetermine the typing of an update or pattern.4.2 Multiple Inheritance and DefaultingThe Haskell type class system allows a class to have multiple superclasses. Since structuresare translated into type classes, our translation naturally allows multiple inheritance: astructure is allowed to inherit slots from any set of other structures.In the type class system, defaults can only apply to methods directly associated with a class,not those inherited from superclasses. This avoids ambiguity over which default to apply11



when the same method is inherited via several routes (e.g. the standard class Integralinherits Ord via both the Ix class and the Real class).We have chosen to relax this rule for structures. Structure declarations may de�ne defaultmethods for inherited slots. The following rule is used to avoid ambiguity:If a structure inherits a slot s, it may either de�ne a new default for s or usethe default associated with the �rst structure in the list of included structurescontaining s.4.3 The Polymorphic Inheritance ProblemThe reader may have noticed that the syntax for structure declarations does not allow bothpolymorphism and inheritance. This is to avoid the following limitation of Haskell's typesystem.The declarations generated by:structure S1 a wheres1 :: astructure S2 b wheres2 :: bstructure S1 a, S2 b => S3 a bwould be:data S1 a = MkS1 adata S2 b = MkS2 bdata S3 a b = MkS3 a bclass S1 s wheres1 :: s a -> aclass S2 s wheres2 :: s b -> b-- instances for S1, S2 omittedinstance S1 (S3 b) wheres1 (MkS3 x _) = xinstance S2 (S3 a) wheres2 (MkS3 _ x) = xThis \class declaration" is not legal Haskell since the type variable s must be instantiatedwith a type constructor rather than a type. This may appear to be legal using constructorclasses, but the instance declaration for S1 will still not work.For now we simply prohibit the inheritance of polymorphic structures but allow polymorphicstructures and unrestricted inheritance of non-polymorphic structures. It remains to be seenwhether this is excessively restricting in real programs.12



5 Alternatives and Related WorkOur system is an experiment, not a �nished product. Having the experience of carryingan implementation all the way through and using it on a number of real applications,including the Yale debugger and a prototype GUI system, we can assess our design andconsider alternatives.5.1 The Namespace IssueOur placement of slot names into the value namespace is a signi�cant di�erence from lan-guages such as C, Pascal, or ML. Using a separate namespace for each structure in themanner of C is not possible, however, because this depends on a bottom-up style of typeinference which determines which type of structure is involved before resolving �eld names.In practice, we have found that placing selector functions in the value namespace makes italmost essential to use long �eld names. For example, the structure Point de�ned bystructure ~Point where x, y :: Intintroduces two top-level function names x and y which the programmer is likely to want touse for other purposes. We adopted the convention of using the structure name as a pre�xfor the �eld name. For example, we would normally choose slot names pointX and pointYinstead of x and y.This problem could be reduced by providing special syntax for selector functions | avoidingthe need to place selector functions in the value namespace| but this would not completelyavoid the problem: all slot names would still be in the same namespace.A more radical solution is used in ML which allows \labels" to be shared among di�erentrecords. These labels do not carry typings in the same way the slot names do. Instead,they simply attach names to tuple components. Implementing records using shared labelswould require signi�cant changes to the syntax and further complicate the type system.5.2 Default valuesIn our experience, some sort of defaulting mechanism is essential. This allows new �elds tobe inserted into a structure without changing all references to the associated constructor.Although not often used, the expressiveness of mutually recursive slot initialization can bevery useful and seems to be more in the Haskell spirit than restricting defaults values toconstants or imposing some sort of evaluation order on the default computation.5.3 Uninitialized SlotsThough easy to implement, the ability to detect uninitialized structure slots is somewhatdubious. To date, our only use of this feature has been to allow the derived Text instancesfor structures to skip over uninitialized slots.13



The need to detect uninitialized slots could be eliminated by making it impossible to leavea slot uninitialized. This could be done by changing the syntax of structure creation torequire a list of slot names and values (rather than allowing any expression of the righttype). It would then be possible for the compiler to check that every slot had either adefault value or an explicitly provided value. A similar restriction is imposed in ML [3],where it is required by the combination of strict semantics and type safety.5.4 Pattern MatchingPattern matching in Haskell lacks the extensibility of other language features. It wouldcertainly be better to add a general purpose mechanism exible enough to de�ne structurepattern matching than to add structure pattern matching as a special case, as in our im-plementation. Sadly, Wadler's \views" [8, 1] would not be exible enough to handle thiscase.In practice, we found that we didn't use pattern matching very much, preferring to useselector functions to extract slots at the place where they are needed rather than at thehead of a function. This may be caused by a number of factors: our familiarity withthis style of programming from other languages that support records; our use of long �eldnames (section 5.1); the fact that structure pattern matching is generally not connectedwith control ow; or our use of structures in big, complicated programs that solve realproblems instead of in highly polished classroom examples.5.5 Allowing Polymorphic InheritanceThere appears to be a simple extension to constructor classes which would allow polymor-phic inheritance. The problem with constructor classes is that only those types which arecurried applications of a type constructor are available. Thus, for a type T a b, constructorclasses can make use of T, T a, and T a b as types. Expanding the implicit currying, thesetypes are \a b -> T a b, \b -> T a b, and T a b. Unfortunately, polymorphic inheri-tance requires a type such as \a -> T a b. We conjecture that adding a limited lambdato the type language is possible: this lambda is needed only to permute the arguments tothe type constructors.5.6 Syntax IssuesUsing similar syntax for update functions (which are functions) and structure patterns(which match data values) is somewhat irregular. In hindsight, it would be possible to dropthe parenthesis in single update functions and to drop multiple update functions. Whereone currently writes update functions such as (moduleName = m, name = nm), one wouldinstead write (moduleName = m . name = nm).Our use of special syntax such as (s=), (=s), (-> S) and (S ->) is somewhat contorted.An alternative would be to indulge in name mangling (deriving one name from another) asin Common Lisp. (For example, the function setFoo would be used to alter the values ofslot foo.) However, no other Haskell feature uses name mangling so we hesitate to add this.14



5.7 Record TypesAn entirely di�erent system can be constructed using labeled records and subtype infer-ence [5, 4]. The advantage of such as system would be that structure declarations wouldbe unnecessary. While type systems have been proposed featuring subtyping based on ex-tensible records, these have two disadvantages: these require a fundamental change to theHaskell type system and it may be di�cult to generate e�cient record operations usingthese systems.5.8 Generalizing to Arbitrary DatatypesThe structures considered in this proposal are just syntactic sugar for tuples; but, Haskell'sdatatypes allow one to de�ne a \sum of tuples". It would be straightforward to adaptthe inheritance-free translation in section 3 to allow one to de�ne �eld names for arbitrarydatatypes. For example, given the datatype:data Expr = Lambda (arg :: Var) (body :: Expr)| App (fun :: Expr) (arg :: Expr)| Var (v :: Var)one could use pattern matching such as:eval env (Lambda (arg = v, body = e)) = \x. eval ((v,x):env) eeval env (App (fun = f, arg = a)) = (eval env f) (eval env a)eval env (Var (v = x)) = lookup env x5.9 Object-Oriented ProgrammingThe ability to inherit structure slots is a step toward a more object-oriented programmingparadigm. However, when we used our structure system in a GUI system in an object-oriented style, a number of de�ciencies became obvious.First, the classes de�ned for structures contain only slot accessing functions. To add otherclass methods (as with C++ virtual functions), we were forced to add an extra class foreach structure type. That is, for a structure S (which de�nes a class S), we added theclass S => S' to hold methods associated with structures inheriting from S. This was veryunsatisfactory | it would be much nicer to be extend structure de�nitions to directlyinclude these methods.Dynamic binding, which would allow methods (dictionaries) to be attached directly to datavalues, is not available in Haskell without some sort of existential typing. This makesnon-homogeneous lists impossible in standard Haskell.The coercion functions were very useful | these allow objects to be moved up or down theclass hierarchy so as to dispatch methods associated with other types.A more general object-oriented extension to Haskell would eliminate the need for slot in-heritance at the structure level. Provided any extra overhead could be eliminated by thecompiler, such an extension may be preferable to using the inheritance mechanism describedhere. 15



5.10 Code GenerationWe have found that three factors signi�cantly a�ect the quality of the generated code:1. Inlining selection and update functions eliminates a function call and allows furtheroptimizations to be performed. Inlining the initialization function avoids constructingand destructuring many partial records.2. Using pattern matching on function arguments produces code that is both more ef-�cient and less likely to leak space than if selector functions are used. The reason issimple: pattern matching is performed when the function is called whereas selectionfunctions are only executed when the selected value is evaluated. Exactly the samedi�erence occurs if programmers use pattern matching on lists instead of head andtail.3. Avoiding overloading (whether by shunning inheritance or by providing explicit typesignatures) eliminates dictionary lookups and allows selection and update functionsto be inlined.Restricting ourselves to single inheritance would allow a more e�cient implementationof inheritance: inherited slots could be placed at the same o�set from the start of astructure as in their parents allowing exactly the same code sequence to be used forselecting a slot | no matter what it's type. This optimisation would eliminate theneed to pass dictionaries around; greatly improving performance.By choosing the best options (inline structure operations, use pattern matching and avoidoverloading), we are able to generate exactly the same code as if no abstraction mechanismshad been used.6 ConclusionsOur experience of being able to name �elds has been entirely positive | we feel thatit signi�cantly improves the readability and maintainability of our programs. Having anelegant notation for updates is also very useful. Programs using these features are easier tomaintain and the code is very readable.The best way to deal with inheritance is not yet known. A more advanced object-orientedextension to Haskell may provide the same capabilities we have implemented. Simplifyingto a single inheritance style would eliminate the performance problems introduced throughthe use of the class system.Much of the implementation baggage could be eliminated by removing non-constant defaultsand inheritance. This would make structure creation trivial: an update is applied to astructure containing the constant defaults. No class or instance declarations would begenerated by structures; only data declarations. No support functions would be required| all structure operations could be expanded inline. Such a stripped-down system wouldaddress many, but not all, of the engineering issues described earlier. At a minimum, sucha system should be considered for Haskell 1.3.16



AcknowledgmentsWe are grateful to Warren Burton, Mark Jones, and Randy Hudson for their comments onan early design of this system. Sandra Loosemore and others in the Yale Haskell group alsoprovided valuable assistance.References[1] FW Burton and RD Cameron. Pattern matching with abstract data types. Journal ofFunctional Programming, 3(2):171{190, April 1993.[2] P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel, J Fairbairn, J Fasel, M Guz-man, K Hammond, J Hughes, T Johnsson, R Kieburtz, RS Nikhil, W Partain, andJ Peterson. Report on the functional programming language Haskell, Version 1.2. ACMSIGPLAN Notices, 27, May 1992.[3] R Milner, M Tofte, and R Harper. The de�nition of Standard ML. MIT Press, 1990.[4] Atsushi Ohori. A compilation method for ML-style polymorphic record calculi. InPrinciples of Programming Languages, pages 154{165. ACM, January 1992.[5] D R�emy. Typechecking records in a natural extension of ML. In Principles of Program-ming Languages, pages 242{249. ACM, January 1989.[6] GL Steele. Common Lisp | The Language. Digital Press, 2nd edition, 1994.[7] PL Wadler. Fixing a space leak with a garbage collector. Software | Practice andExperience, 17(9):595{608, 1987.[8] PL Wadler. Views | a way for pattern matching to cohabit with data abstraction.Technical Report 34, Programming Methodology Group, Chalmers University, Sweden,March 1987.[9] PL Wadler and S Blott. How to make ad-hoc polymorphism less ad hoc. In Principlesof Programming Languages. ACM, January 1989.

17


