
Malloc Pointers and Stable Pointers:Improving Haskell's Foreign Language InterfaceAlastair Reid�Computing Science Department, University of GlasgowGlasgow G12 8QQ, ScotlandSeptember 26, 1994AbstractThe Glasgow Haskell compiler provides a foreign language interface whichallows Haskell programs to call arbitrary C functions. This has beenused both to implement the standard Haskell IO system and a variety ofapplications including an arcade game [8], and a graphical user interfaceto a database [19].The theoretical problems associated with using impure functions frompure functional languages are avoided through the use of monads [17]; andthe mismatch between strict languages with no garbage collection andlazy languages with garbage collection is tackled by unboxing (that is,forcing evaluation of arguments and stripping o� any header information)[15].Whilst this works well for simple examples, it is unsuitable whenone wants to pass arguments (or results) which are lazy, polymorphic orvery large. We describe two extensions to the garbage collector whichsolve these problems by allowing better interaction between the Haskellgarbage collector and memory allocation in the imperative world.1 IntroductionThe LISP and Standard ML communities have known for some time that im-pure functional languages are useful for more than just symbolic manipulationand toy programs | functional programs can also provide sophisticated userinterfaces [9, 7] and can be used for systems programming tasks such as imple-menting communications protocols [10].The (lazy) pure functional world is beginning to demonstrate that purefunctional languages are also good for writing programs traditionally consideredto be outside their domain. A good example is Carlson and Hallgren's Fudgetsystem [5] | an e�cient library of \functional widgets" which can be used toimplement graphical user interfaces.�email: areid@uk.ac.glasgow.dcs; http: //www.dcs.gla.ac.uk/~areid1

It is therefore technically possible to discard most (or all?) existing imper-ative libraries and reimplement them all in a (pure) functional language butthere are compelling reasons why we cannot or should not do so:Development E�ort In addition to the libraries that come supplied withoperating systems and compilers, there are several substantial librariesof freely-available software such as the X widget system, and the FreeSoftware Foundation's libraries.If each such library must be reimplemented in a functional language beforeit can be used, functional programs will require considerably more e�ortto produce than imperative programs.Performance Despite signi�cant improvements in compiler technology, highlytuned imperative programs remain signi�cantly more e�cient in time and(especially) space than equivalent lazy functional programs.There are two major problems in calling imperative library routines from apure, lazy functional language:Control
ow In a pure functional language, the order of evaluation can onlya�ect termination and resource usage | this leaves the optimisationphases of the compiler and the runtime system considerable freedom tochoose an evaluation order. If \impurities" (i.e. side e�ects) are intro-duced, steps must be taken to constrain the choice of evaluation order.Passing Data The older (and most popular) imperative languages (such as Cand Pascal) either allocate objects at a �xed address, on the stack or onthe heap according to their lifetime. All heap allocated objects must beexplicitly deallocated.In functional languages most objects are heap allocated and automati-cally deallocated through garbage collection. (A lifetime analysis is alsopossible | allowing the compiler to decides where to allocate an objector to perform \compile-time" garbage collection.)Issues of control
ow can be dealt with by writing programs in continuationpassing style or monadic style [17]; therefore this paper is primarily concernedwith issues associated with passing data to and from an imperative language.Section 2 describes the Glasgow Haskell Compiler's foreign language inter-face. Section 3 describes problems in passing arguments that are: polymor-phic; lazy; large; persistent from one call to another; or functions. We proposetwo new types and associated operations to overcome these problems. Theseextensions are included in the latest release of the Glasgow compiler | theimplementation is outlined in section 4.2 The Raw IronThis section outlines some of the primitive facilities for calling imperative func-tions provided by ghc: the \raw iron" from which higher level facilities are built.Further facilities are described in section 3 when we discuss the extensions wemade to the compiler.)

2.1 C calls and the PrimIO monadFor our purposes, the most important of ghc's primitive operations is _ccall_which is used to call an arbitrary C function from within Haskell. To call thestandard C trigonometric function sin, one writes_ccall_ sin (3.2::Double)and to call the standard C output function printf, one writes_ccall_ printf "The answer is %d.\n" (42::Int)Note that the compiler must be able to determine the type of the arguments(and results) of a _ccall_ | hence the explicit type signatures on argumentsthat would otherwise be ambiguous.Note too that _ccall_ does not distinguish between pure functions (suchas sin) and impure functions (such as printf) | both are assumed to haveside-e�ects. The theoretical and practical problems arising from calling impurefunctions from a pure functional language are avoided by using a monad toforce strict sequencing of _ccall_s. We refer the reader to [17, 14, 16] for adetailed discussion of the monadic approach but note that the type PrimIO andfunctions thenPrimIO, returnPrimIO and unsafePerformPrimIO were calledIO, thenIO, returnIO and performIO respectively in [17].If a programmer believes that a computation of type PrimIO � is referen-tially transparent and does not have any side-e�ects, unsafePerformPrimIO ::PrimIO �! � can be used to eliminate the need to include it the main threadof execution.1For example, the following program assumes the existence of two imperativefunctions readInt and writeInt to read two numbers and write their sum.mainPrimIO =_ccall_ readInt `thenPrimIO` \ x ->_ccall_ readInt `thenPrimIO` \ y ->_ccall_ writeInt ((x+y) :: Int) `thenPrimIO` \ () ->returnPrimIO ()(Haskell Notation: If f is a binary function, the function `f` is a binary in�xoperator. The notation \x -> e represents the lambda term �x:e; the scopeof x extends as far to the right as possible.)2.2 CCallable and CReturnable data typesThe representation of values used in a language implementation depends onwhether automatic garbage collection is provided or not: languages with garbagecollection typically add a header to the front of every object for use duringgarbage collection. This header must be removed from arguments to a _ccall_and added to the front of results. In addition, values in lazy languages maybe represented by a \thunk" representing the calculation required to calculate1The word \unsafe" is intended to remind the programmer that the compiler has no wayof checking whether or not the operation has side-e�ects. Apart from the obvious debugginguses, we have yet to see a program that safely uses this function to call a side-e�ectingfunction.

that value. In most cases, imperative functions must be passed the value of a\thunk" rather than the \thunk" itself.The necessary conversions could be made explicit through the use of \un-boxed types" [15] but ghc automatically performs these conversions on thefollowing basic data types: Char, Int, Float and Double. These types can beboth passed as arguments in _ccall_s and returned as results from _ccall_s| we call such types CCallable and CReturnable respectively. (There is amechanism for expanding the set of CCallable and CReturnable types whichwe shall not elaborate here.)2.3 Nonstandard TypesIn addition to these standard Haskell types, ghc provides the non-standardtypes _Word (an unsigned integer), _Addr (a machine address), _ByteArray (acontiguous region of bytes in the Haskell heap which may be read but not modi-�ed) and _MutableByteArray (a contiguous region of bytes in the Haskell heapwhich may be both read and written). ghc provides a small set of operationson these types including equality tests, bit manipulations and array allocationand indexing operations._MutableByteArrays can be used to return multiple arguments from a Cfunction. For example one could write the following to call the standard Cfunction sincos which takes a double-precision angle and the address of twodouble-precision variables and writes the sine and cosine of the angle into thetwo variables.sincos :: Double -> PrimIO (Double, Double)sincos a = unsafePerformPrimIO (newDouble `thenPrimIO` \ sv ->newDouble `thenPrimIO` \ cv ->_ccall_ sincos_wrapper a sv cv `thenPrimIO` \ () ->readDouble sv `thenPrimIO` \ sin ->readDouble cv `thenPrimIO` \ cos ->returnPrimIO (sin, cos))The non-standard functions newDouble and readDouble are de�ned us-ing primitive operations on _MutableByteArrays. They are used to allocateenough memory to hold a Double and to extract a Double from an array. Thewrapper function sincos_wrapper performs type coercions and, most impor-tantly, overcomes any restrictions on alignment of double imposed by modernRISC architectures through the use of some machine-speci�c macros for assign-ing unaligned doubles.voidsincos_wrapper(StgDouble a, StgByteArray *sin, StgByteArray *cos){ double s, c;sincos(a, &s, &c);ASSIGN_DBL((StgDouble *) sin, s);ASSIGN_DBL((StgDouble *) cos, c);}

The need to write a small wrapper function for every imperative functioncalled is rather tedious and error-prone. A far more reliable approach wouldbe to write a wrapper-generator which automatically constructed the Haskelland C wrapper functions from a list of type signatures.3 Problems with the raw ironMany values found in Haskell programs are unevaluated heap-allocated objectsof arbitrary size such as Lists and arbitrary precision Integers. Most valuesin imperative programs are fully evaluated stack-allocated objects of a �xed(small) size such as 32-bit integers. This mismatch between Haskell and thelanguages it is calling can usually be solved by fully evaluating the value andpassing it to the imperative function using the standard argument passing con-vention for that architecture. This standard approach is restricted in a numberof ways:Laziness: Since all arguments are evaluated before calling the C function, onecannot write lazy functions. Given that C is a strict language, this seemsperfectly reasonable. However, O'Donnell [12] describes a hardware im-plementation of arrays which provides extensible, sparse functional arrays(called \ESF arrays"). By exploiting the parallelism inherent in hardware,O'Donnell is able to perform both update and lookup in constant time.When using such a device from a lazy language, one would obviously re-quire these arrays to contain (pointers to) unevaluated values rather thanjust integers.Polymorphism: Since Haskell's evaluation mechanism and C's argumentpassing mechanisms vary from one type to another, one cannot writefunctions exhibiting pure polymorphism. Again, since C does not providepure polymorphism, this seems perfectly reasonable. However, problemswould arise if one wished to use O'Donnell's ESF arrays to implementarrays of characters,
oating point numbers or even arrays.Large persistent data structures: Since C's argument passing conventionrestricts one to passing \small" values (ie values that will �t in registers)one cannot directly pass (or return) large objects but must pass theiraddress instead.If the object being passed has a short well-de�ned lifetime, it is reasonableto use tricks such as that used in section 2.3 where we explicitly allocatedspace on the heap, call the function sincos and read the values out.Similarily, if returning an array of characters (say) from C to Haskell,one might explicitly allocate an array on the C heap, copy the resultinto the array, return the address of the result to Haskell, read thecharacters from the array into a list and call the C function free toexplicitly deallocate the array.As well as being somewhat ine�cient, such solutions can cause garbagecollection problems if an object \persists" from one function call to thenext:

� Many modern garbage collectors move objects during garbage col-lection. This doesn't normally cause a problem because all pointersto an object are updated when the object is moved. If the garbagecollector is unaware that the imperative world has a pointer to aHaskell heap object, the pointer cannot be updated and errors canarise.� Garbage collection reclaims storage used by objects that are nolonger referenced. If the garbage collector is unaware that the im-perative world has a reference to a Haskell heap object, it might bedeallocated when references still exist.� Since most C implementations do not have automatic garbage col-lection (see, for example, [3] for an exception), it is necessary toexplicitly deallocate heap-allocated objects as the last reference tothe object is deleted. This is hard to do correctly in an imperativelanguage; it is virtually impossible in a lazy functional language.Haskell functions In C a function may be represented by a pointer to thecorresponding machine code for that function. Such pointers may bepassed to and returned from other functions. In Haskell, it is not enoughto pass a pointer to the machine code, one must also pass any valuesbound to free variables occuring in the function. Since the number offree variables may be changed by evaluation and by optimisations (bothat compile time and during garbage collection), there is no easy way toconvert Haskell functions to their corresponding representation in C.We have come across several examples where it would be useful to be ableto pass Haskell functions to C:� When writing graphical user interfaces under X, we must providethe \widgets" with actions (\callbacks") to perform when the userclicks a mouse on a widget or closes a window. If one wishes to writegraphical user interfaces in Haskell, the natural way of de�ning whichcallback to call in response to a given event is to store the addressof the (possibly heap-allocated) callback routine in the Widget |almost exactly as one does for C. (Our earlier paper [19] describes arather ad hoc approach which avoids the need to extend the garbagecollector.)� The Haskell 1.3 IO proposal de�nes a functionsetInterrupt :: IO () -> IO (IO ())which allows a monadic program to specify an \interrupt handler"to be executed when a console interrupt occurs.An e�cient implementation requires the runtime system to storethe current \interrupt handler" in a global C variable. (Since this ispart of the runtime system, it would be possible to build it into thegarbage collector as a special case.)Our solution to the above problems is to add two new primitive types tothe language: _MallocPtrs are pointers from the Haskell heap to objects inthe C heap; and _StablePtrs are pointers from the C heap to objects in the

Haskell heap. We modify the garbage collector to take these objects intoaccount during garbage collection.3.1 Malloc PointersIn principle an object of type _MallocPtr is just an index into a table ofaddresses of objects in the C heap. (The name derives from the way mostobjects in the C heap are allocated: by calling the standard library functionmalloc. However, we expect _MallocPtrs to be values such as �le handles,ESF array identi�ers, etc.)A _MallocPtr is automatically allocated on return from a _ccall_ with re-sult type _MallocPtr and is automatically dereferenced when passed as an ar-gument to _ccall_. When the ghc runtime system detects that a _MallocPtris no longer accessible, the _MallocPtr is deallocated and a programmer-supplied C functionvoid FreeMallocPtr(StgMallocPtr mp)is called.Since ghc will only detect that a _MallocPtr is inaccessible during garbagecollection, C programs may call the C function StgPerformGarbageCollectionto force a garbage collection.23.2 Stable PointersIn principle (and in practice), an object of type _StablePtr � is an indexinto a table of addresses of objects of type � in the Haskell heap. When theHaskell garbage collector moves an object to which there is a _StablePtr, thecorresponding entry in the table is updated; an object will not be deallocatedif a stable pointer to it exists.Stable pointers may be passed to and returned from _ccall_s. The follow-ing operations may be used from Haskell to explicitly allocate, deallocate anddereference _StablePtrs.makeStablePointer :: a -> PrimIO (_StablePtr a)freeStablePointer :: _StablePtr a -> PrimIO ()derefStablePointer :: _StablePtr a -> aNote that, because of the use of explicit allocation and deallocation, space leakscan result if stable pointers are not released when �nished with. It is for thisreason that makeStablePointer is not of type �! _StablePtr �: use of thePrimIO monad avoids any risk of a single use being \optimised" into severaluses.There is also a C procedurevoid FreeStablePtr(StgStablePtr sp)2If a _ccall_ is likely to perform a garbage collection, it is necessary to take considerablecare that no registers contain live heap pointers and to make the contents of essential registerssuch as the heap pointer available. Rather than pay this extra cost on every _ccall_, weprovide a special form _ccall_GC_ which should be used if StgPerformGarbageCollectioncan be called by the C function being called. It is a checked runtime error to callStgPerformGarbageCollection during a plain _ccall_.

which frees a stable pointer. (This is the only ghc-provided operation whichmay be called within FreeMallocPtr.)To support the callback mechanism, there are also C functionsvoid enterPrimIO (StgStablePtr sp)int enterInt (StgStablePtr sp)...which calls stable pointer of type StablePtr (PrimIO ()), StablePtrInt, etc. Sadly, there is little possibility of adequately typechecking these calls.3.3 ApplicationsOf the two mechanisms, we have found _MallocPtrs to be the most useful. Inaddition to the uses mentioned above, some possible applications include:� Haskell provides an operation to lazily read a �le. The result of thisfunction is a string consisting of the contents of the �le but, because theread is performed lazily (ie as each character in the �le is demanded), itis still possible to process a �le in constant space.One problem is in automatically closing these �les. If the end of the�le is reached, the �le may be simply closed; but if the �le is discardedbefore the end of the �le is reached, the �le will remain open. As well aspreventing other programs from writing to the �le, this might result inthe program running out of �le handles (on a UNIX system, each processis only allowed to open a certain number of �les).� In the X window system, each display runs a server which can draw lines,text, etc. on the screen. Programs wishing to perform graphics on a givendisplay connect to the appropriate server and send a stream of requests todraw images. To reduce the amount of network communication, bitmaps,fonts, colours, etc are stored in the server's memory. Allocation and deal-location of these resources is performed explicitly. (One might think thatresources could be deallocated when a connection is broken. The X proto-col allows resources to be shared between processes but does not requireclients to inform it of such sharing | this prevents such deallocation fromoccuring.)A common problem with imperative programs is that they fail to deal-locate some of the resources allocated to them. This leads to a grad-ual degradation of performance and functionality as the resources of theserver gradually disappear and, to alleviate this problem, most serversare initially allocated far more memory than they require.It should be possible to avoid this problem by using _MallocPtr to repre-sent all server objects. If any allocation request fails, the client should callStgPerformGarbageCollection in the hope of freeing some unreachable_MallocPtrs.One potential problem with this scheme is that it is possible for one qui-escent program (a mail-reader, say) to hog all the resources if it does notperform a garbage collection very often. This could perhaps be overcomeby modifying the server to inform all clients when it was low on resources.

A program receiving this noti�cation could perform a garbage collectionin the hope of freeing some _MallocPtrs.4 ImplementationThis section describes how stable pointers and malloc pointers are implemented.4.1 Malloc PointersProgrammers are encouraged to think of _MallocPtrs as indexes in a table ofpointers into the C Heap. However, since the only operation on these \indexes"is to dereference them and to scan through them all, it is possible to implementthe \table" as a linked list without any loss of e�ciency. (This avoids the needto implement complex operations to resize the table.)(There is one slightly subtle aspect to this choice of representation: duringgarbage collection, an object is normally considered to be \live" if it is a \root"or it is pointed to by any other \live" object; it is important not to treat the linkto the next _MallocPtr in the list as an ordinary pointer or _MallocPtrs willonly die when all _MallocPtrs further up the list die. This might badly a�ecta conservative garbage collector operating without knowledge of the internalstructure of heap objects.)4.2 Stable PointersA _StablePtr is represented as an index into a table. The table is allocated onthe heap and may be resized to suit demand. Every time the table over
ows, itis doubled in size resulting in an amortised constant-time operation. We main-tain a \stack" of unused entries in the table. (This stack could be eliminatedby threading a free list through the table of \unstable" pointers. This wouldrequire a way of distinguishing \unstable pointers" from links in the list.)Ignoring standard header information (used by the garbage collector) a sta-ble pointer table closure looks like this:NPtrs SP0 SP1 : : : SPn�1 Top s0 s1 : : : sn�1The �elds are:NPtrs The number of (stable) pointers.SPi An \unstable" pointer to a closure. This is the pointer that gets updatedwhen the garbage collector moves an object we have a stable pointer to.If the pointer is not in use, it points to a preallocated static closure.Top The index of the �rst element above the top of the stack.si An entry in a stack of unused pointers. Entries in use will contain a numberin the range 0 : : : n� 1.For example, with n = 4 and pointers 0 and 3 in use (pointing to p1 andp2 respectively), the table might look like this:4 p1 ? ? p2 2 1 2 ? ?

4.3 Garbage CollectionGlasgow Haskell supports four di�erent garbage collectors:� a 2-space copying collector [6];� a 1-space compacting collector [11];� a \dual mode" collector which operates either as a two space collector ora compacting collector depending on the amount of live data [20]; and� a generational collector [1, 21]. This collector maintains just two genera-tions: the new generation is collected using a two-space collector; and theold generation is collected using a one-space collector. To allow separatecollection of the generations, a list of pointers from the old generation tothe new generation is maintained.The changes required to the collectors are as follows:4.3.1 Copying collector2-space collection consists of a single main phase which alternates betweencopying live heap objects into a new area of memory (evacuation) and scanningcopied objects for pointers to uncopied heap objects (scavenging). When anobject is evacuated, it is overwritten by a \forwarding pointer" which points tothe copy | this allows all references to an object to be updated with the sameaddress.The stable pointer table is treated as a \root" during garbage collection andcollected in the normal way.After this main phase has completed, elements of the _MallocPtr List(which will still be in the from space) is scanned checking which objects havebeen replaced by forwarding pointers (and so are still live) and which are nowdead and can be released. Each live object is added to the new _MallocPtrlist.There is one slight subtlety. When a heap-object is overwritten with aforwarding pointer, care must be taken not to overwrite the link to the nextMallocPtr in the chain since this is required later in the garbage collection.(In all other objects, the garbage collector is free to trash the contents of anobject as soon as it has been copied.)4.3.2 Compacting Collector1-space collection consists of three main phases: a traditional marking phasewhich writes \marks" to a bitmap; a linking phase which links all references toan object into a single list; and a moving phase which moves all heap objectsdown in memory deleting holes and updating references to objects.Again, the stable pointer table must be treated as a \root" during garbagecollection.After the marking phase, we scan through the _MallocPtr list releasingthose which have not been marked. (This must be done before the linkingphase so that the stable pointer table will contain sensible values and can beupdated by any calls to freeStablePtr.) Each _MallocPtr is added to the_MallocPtr list as it is moved.

4.3.3 Dual Mode CollectionThe dual-mode collector switches between copying (2-space) collection andcompacting (1-space) collection according to residency. It is simply a com-bination of the above.4.3.4 (Appel) Generational CollectionThe Appel generational collector maintains two separate generations: an oldgeneration which is collected by a compacting collector and a new generationwhich is collected by a copying collector. (When the new generation is collected,it is copied onto the end of the old generation.)This is essentially just a straightforward combination of the copying and thecompacting collectors. However, since the generations are collected separately,we maintain a separate _MallocPtr list for each generation. Collecting thenew generation transfers all live objects to the old generation and so the new_MallocPtr list is emptied and the old list extended.Care must be taken to ensure that StgPerformGarbageCollection per-forms a full garbage collection: merely
ushing the new generation might notrelease all unreachable objects.5 Further Work5.1 Supporting Several Kinds of Malloc PointerSo far most of our applications have only used malloc pointers as pointersto a single kind of object (eg strings or images). In this situation, de�ningthe function FreeMallocPtr is straightforward. As malloc pointers are usedmore heavily, we anticipate problems with di�erent kinds of object requiringdi�erent deallocation routines. An obvious solution is that instead of returninga pointer to an object, a C function should return a pointer to a pair containinga pointer to an object and a pointer to a freeing routine appropriate to thatkind of object. (An early implementation stored both the pointer to the objectand a pointer to the freeing routine in the Haskell heap. The pointer to thefreeing routine was removed after problems persuading C compilers to returnpairs reliably.)5.2 Eliminating a Space LeakThough individually safe, the provision of both stable pointers and mallocpointers introduces a potential space leak. The reason for this is that it ispossible to setup a cyclic structure involving an object in the C world whichcontains a stable pointer in the Haskell world which contains a malloc pointerto the C object.This space leak could be eliminated by changing the interface to mallocpointers to allow the C world to take a more active role in garbage collection.� At start of GC, tell the C world that GC is about to start. (This wouldallow the C world to clear mark bits (say) on heap objects.)

� During GC, tell the C world whenever a live malloc pointer is found.(This may cause the C world to inform the Haskell world that a stablepointer is live.)� At end of GC, tell the C world that GC is ending. (This would allow theC world to delete any malloc pointers that have not been marked as live.)(In a generational collector, the C world should be told that all mallocpointers in uncollected (old) generations are live at the end of GC.)We have not implemented this alternative since the greater complexity (andharder testing) did not seem to be justi�ed by the risk.5.3 Better Generational CollectionGarbage collecting an entire heap may take some time { it would be nice to beable to perform only as much work as is required to free enough MallocPtr. Ina generational garbage collector, this could be done by providing an additionalparameter indicating how many generations are to be collected. One could thenwrite:generation = 0;while(freeSpace < requiredSpace && generation != numGenerations){StgPerformGarbageCollection(generation);generation += 1;}Each call to the collector copies the current generation into the next level.Thus, the only overhead of repeatedly calling the collector are the tests thatthe low-numbered generations are indeed empty.6 Related WorkOur \malloc pointers" mechanisms bear some resemblance to the \weak ref-erences" and \weak arrays" of (the DEC SRC implementation of) Modula 3[4] and the ObjectworksnSmalltalk implementation [13] respectively. Both pro-vide a method of associating a \cleanup procedure" to an object which is calledwhen the associated object \dies".An essential di�erence is that the cleanup procedure is written in Modula3 (respectively Smalltalk). This is possible because both languages supportmultitasking and associated mechanisms such as semaphores to use it safely.Since the cleanup procedures will, by their nature, involve side-e�ects, it is notclear that this solution would be appropriate in Haskell.We note that there is no need to build stable pointers into an imperativelanguage implementation: they are readily implemented by using a global tableor list of stable pointers. This provides the same behaviour since the garbagecollector will automatically trace all global variables.

7 SummaryThere is a wealth of high quality library code freely available for use by imper-ative programmers. If functional programmers are unable to (or choose not to)use this resource, any claims of greater productivity or higher levels of reusebecome nonsense.Glasgow Haskell's existing foreign language interface allowed one to callsimple library functions but was insu�cient for creating a reliable interface toa large library featuring involving large lazy polymorphic objects which persistfrom one function call to the next.We have described two new types to overcome these problems: _MallocPtrsto allow Haskell to refer to C objects; and _StablePtrs to allow C to refer toHaskell objects.AcknowledgementsAs well as bene�ting from the existence of a system on which to implement theideas in this paper, I have received considerable help from those working onthe Glasgow Haskell compiler. In particular, Simon Peyton Jones, Will Par-tain and Jim Mattson have provided considerable assistance with the compilermodi�cations described here.Sigbjorn Finne, David Fraser, Satnam Singh, Paul Smith and Kevin Ham-mond (all at Glasgow University) provided early versions of Haskell interfacesto a variety of libraries which motivated the development of the ideas in thispaper. Ian Poole (at the Medical Research Council Human Genetics Unit,Edinburgh) image-processing requirements prompted the implementation of\Malloc Pointers" described in this paper. Jim Mattson's implementation ofinterrupt handlers provided yet another motivation for Stable Pointers.ToDo: Simon: where did the money you paid me come from?References[1] AW Appel, Simple generational garbage collection and fast allocation,Software | Practice and Experience 19, 171{183, Feb. 1989.[2] JF Bartlett, Compacting garbage collection with ambiguous roots, LispPointers 1, 6, 3{12, Apr. 1988.ToDo: Check that this reference describes weak pointers[3] HJ Boehm, Space e�cient conservative garbage collection, in Proc. ACMComference on Programming Language Design and Implementation, Al-buquerque, 197{206, June 1993.[4] L Cardelli, J Donahue, L Glassman, M Jordan, B Kalsow, G Nelson,Modula-3 Language De�nition, ACM SIGPLAN Notices, 27, 8, 15{42,Aug. 1992.[5] M Carlsson and T Hallgren, Fudgets: a graphical user interface in a lazyfunctional language, in Proc. Conference on Functional Programming andComputer Architecture, 1993.

[6] CJ Cheney, A nonrecursive list compacting algorithm, Communications ofthe ACM 13, 677{678, Nov. 1970.[7] CLX Common Lisp X Interface, Texas Intruments Incorporated, 1989.[8] D Fraser, Haskell Defender: implementing arcade games in lazy functionallanguages, Senior Honours Project, Computing Science Department, Uni-versity of Glasgow, 1994.[9] ER Gansner, JH Reppy, eXene, Oct. 1991.[10] R Harper and P Lee, Advanced languages for systems software: theFox project in 1994, CMU-CS-94-104, Department of Computing Science,Carnegie Mellon University, Jan 1994.[11] HBM Jonkers, A fast garbage compaction algorithm, Information Process-ing Letters 9, 26{30, July 1979.[12] JT O'Donnell, Data parallel implementation of Extensible Sparse Func-tional Arrays, Parallel Architectures and Languages Europe, LNCS 694,Springer-Verlag, 68{79, 1993.[13] ParcPlace Systems, ObjectworksnSmalltalk User's Guide (Release 4), 1550Plymouth Street, Mountain View, California 94043. 1990.[14] SL Peyton Jones and J Launchbury, Lazy imperative programming, ACMSIGPLAN Workshop in State in Programming Languages, Copenhagen,June 1993.[15] SL Peyton Jones and J Launchbury, Unboxed values as �rst class citizensin a non-strict functional language, in Proc. 1991 Conference on FunctionalProgramming and Computer Architecture, Cambridge, Sept. 1991.[16] SL Peyton Jones and J Launchbury, Lazy functional state threads, in Proc.ACM Comference on Programming Language Design and Implementation,Orlando, June 1994.[17] SL Peyton Jones and PL Wadler, Imperative functional programming, inProc. 20th ACM Symposium on Principles of Programming Languages,Charlotte, ACM, Jan 1993.[18] I Poole and D Charleston, Experience of developing a cervical cytologyscanning system using Gofer and Haskell, this volume, September 1994.[19] AD Reid and S Singh, Implementing fudgets with standard widget sets,in Proc. Glasgow Workshop on Functional Programming, Workshops inComputing Series, Springer-Verlag, July 1993.[20] PM Sansom, Combining copying and compacting garbage collection, inProc. GlasgowWorkshop on Functional Programming, Workshops in Com-puting Series, Springer-Verlag, Aug 1991.[21] PM Sansom and SL Peyton Jones, Generational garbage collection forHaskell, in Proceedings of the 1993 Conference on Functional Programmingand Computer Architecture.

