
Appeared in the Workshop on Advanced Separation of Concerns in Software Engineering at ICSE 2001,
Toronto, Ontario, May 2001.

Aspect Weaving as Component Knitting: Separating Concerns with Knit

Eric Eide Alastair Reid Matthew Flatt Jay Lepreau

University of Utah, School of Computing
{eeide,reid,mflatt,lepreau}@cs.utah.edu http://www.cs.utah.edu/flux/

Abstract

Knit is a new component specification and linking lan-
guage. It was initially designed for low-level systems
software, which requires especially flexible components
with especially well-defined interfaces. For example,
threads and virtual memory are typically implemented
by components within the system, instead of being sup-
plied by some execution environment. Consequently,
components used to construct the system must expose
interactions with threads and memory. The component
composition tool must then check the resulting system
for correctness, and weave the components together to
achieve reasonable performance.

Component composition with Knit thus acts like as-
pect weaving: component interfaces determine the “join
points” for weaving, while components (some of which
may be automatically generated) implement aspects.
Knit is not limited to the construction of low-level soft-
ware, and to the degree that a set of components ex-
poses fine-grained relationships, Knit provides the ben-
efits of aspect-oriented programming within its compo-
nent model.

1 Introduction

To ensure the flexibility and usability of components, a
component model must assign well-specified interfaces
to each component, so that programmers know how to
use or replace them. The mechanism for linking compo-
nents must give the programmer broad control over the
way that components are combined, allowing the pro-
grammer to replace any component with another having
the same interface, or even to use a particular compo-
nent multiple times in the same system, each time with
a different importing context.

This research was largely supported by the Defense Advanced
Research Projects Agency and the Air Force Research Laboratory, un-
der agreement numbers F30602–99–1–0503 and F33615–00–C–1696.
The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation
hereon.

US Mail contact address: University of Utah, School of Comput-
ing, 50 S. Central Campus Drive, Room 3190, SLC, UT 84112–9205.

In addition, to scale component programming to large
and complex sets of components, the model must also
addresscross-cuttingdependencies among components.
These kinds of relationships occur naturally when build-
ing reusable software or component kits. For exam-
ple, consider the problems faced by the designer of a
component kit for operating systems development. At
the system level, services such as virtual memory and
threads, which are givena priori in the execution en-
vironment for applications, must be explicitly imple-
mented by components. This in turn means that con-
nections to these basic services should be made ex-
plicit: e.g., that every component that requires threads
be designed so that it has an explicit dependency on
the threading component. As connections become more
and more exposed, the relationships between compo-
nents become more and more complex, and often cir-
cular. The components cannot be organized into discrete
layers, and the soundness of each connection involves
dependencies that may span the entire system.

The need to define, manage, and check dependencies,
despite their propagation throughout the system, was
our motivation to createKnit [11], a new component
specification and linking language that is suited to com-
plex programming situations such as those encountered
by systems code, middleware, and other complex and
reusable software. Knit supports “manifest aspects” that
involve the insertion of code or components into the
system, as well as “non-manifest aspects” that involve
reasoning about the correctness of component composi-
tions. Knit provides configure-time flexibility: Knit per-
forms aspect weaving and checking at system configure-
time, to allow for maximum performance and assurance
at system run-time. Because we targeted Knit to the
needs of systems and middleware code, Knit works on
C language components.

Knit is a work in progress. In the following sections
we summarize the current language and tools (Section 2)
and show how “aspect weaving” and “component knit-
ting” are related (Section 3). We then describe planned
future improvements to Knit to better support aspect-
oriented programming (Section 4).

mailto:eeide@cs.utah.edu
mailto:reid@cs.utah.edu
mailto:mflatt@cs.utah.edu
mailto:lepreau@cs.utah.edu
http://www.cs.utah.edu/flux/

#include <stdio.h>

int main(int argc, char** argv) {

printf("Hello, world!\n");

return 0;

}

(a) The filehello.c, the canonical “Hello, world!” program.

unit Hello = {

imports [io: {printf}];

exports [main: {main}];

depends { main needs io; };

files { "hello.c" };

}

(b) The filehello.unit, the unit definition for “Hello, world!”

Figure 1: Defining an atomic unit with Knit.

2 Knit

The Knit component specification and linking language
is based onunits [5, 6], a model of components in the
spirit of the Modula-3 [8] and Mesa [10] module sys-
tems. A unit is a component or model definition, either
atomic (with a C implementation) orcompound(com-
posed of other units).

2.1 Building Blocks: Atomic Units

An atomic unitcan be thought of as a module with three
basic parts:

1. A set of imports, which name the functions and
variables that must be supplied to the unit.

2. A set ofexports, which name the function and vari-
ables that are defined by the unit and are made
available to other units.

3. A set of top-level C declarations and definitions,
which must include a definition for each exported
name, and which may use any of the imported
names as required. Defined names that are not ex-
ported are inaccessible from outside the unit. (The
Knit compiler ensures that this is so.)

Figure 1(a)shows the C code for the canonical “Hello,
world!” program, andFigure 1(b)shows the correspond-
ing Knit unit definition. This simple unit, calledHello,
imports a single functionprintf and exports a single
function main. Functions and variables are imported
and exported from units in groups calledbundles. In

the Hello unit, theprintf function is imported as a
member of the bundle calledio, and themain function
is exported as a member of the bundle calledmain. Bun-
dles are critical for defining units with many imported or
exported functions.

The unit does not contain the actual C definition of the
main function; instead, the unit refers to the filehello.c
in which the function is defined. This feature of Knit
allows one to use Knit generally without modifying ex-
isting C code. The separation between a unit’s defini-
tion (in a ‘.unit’ file) and implementation (one or more
‘.c’ files) allows for other kinds of flexibility as well.
For instance, one can define units at different levels of
granularity: one can group several files into one unit for
ease of specification, or one can make a separate unit for
each file, to maximize configurability.

In addition to imports, exports, and files, the Hello
unit definition contains adependsspecification. This
line provides an initialization constraint for the unit. In
particular, the specification “main needs io” says that
the functions in themain bundle call the functions that
are imported from theio bundle. Knit uses this infor-
mation in order to provideautomatic scheduling of unit
initialization and finalization, thus ensuring that all the
unit instances within a compound unit instance will ini-
tialized and finalized in a correct order.

2.2 Linking: Compound Units

A set of units can be linked together to form acompound
unit. The task of linking a set of units into a compound
unit is to match the imports of each unit either with the
exports of another unit or with the imports of the com-
pound unit (to be linked to the exports of some other unit
at a later time). Optionally, the exports of each unit can
be propagated as exports of the compound unit. The re-
sult of composing units is a new unit, which is available
for further linking.

Figure 2 shows how a compound unit can be defined
by combining other units. (The units within a com-
pound unit can be either atomic or compound, but in
this example, each of the internal units is atomic.) The
first unit,Main, imports two bundles calledio andmsg.
These bundle each contain a single function,printf
andmessage respectively, as defined by the appropriate
bundletypedefinitions.

The second unit,NWK, imports nothing but exports amsg
bundle, meaning that the unit exports a function called
message. However, the code inFigure 2(b), which
implements theNWK unit, does not define a function
calledmessage. Knit allows us to “fit the implemen-
tation to the interface,” however, through the use of a

2

#include <stdio.h>

const char *message(void);

int main(int argc, char** argv) {

printf("%s", message());

return 0;

}

(a) The filemain.c, implementing unitMain.

const char *not_worth_knowing(void) {

return

("A language that doesn’t affect the "

"way you think about programming is "

"not worth knowing.\n");

}

(b) The filenwk.c, implementing unitNWK.

// Define shared bundle types.

bundletype IO_T = { printf }

bundletype Msg_T = { message }

bundletype Main_T = { main }

unit Main = {

imports [io: IO_T,

msg: Msg_T];

exports [main: Main_T];

depends { main needs (io+msg); };

files { "main.c" };

}

unit NWK = {

imports [];

exports [msg: Msg_T];

depends { msg needs {}; };

files { "nwk.c" };

rename {

msg.message to not_worth_knowing;

};

}

unit Program = {

imports [io: IO_T];

exports [main: Main_T];

link {

// [exports] <- Unit <- [imports];

[msg] <- NWK <- [];

[main] <- Main <- [io, msg];

};

}

(c) The Knit unit definitions.

Figure 2: Defining a compound unit.

rename declaration. The declaration inNWK says that
the message member of themsg bundle should be re-
named, or implemented by, the C functionnot_worth_
knowing. Renaming declarations are essential in Knit,
to match existing code to “standardized” component in-
terfaces.

Finally, theProgram compound unit is defined by com-
posing an instance ofMain with an instance ofNWK. On
the first line of thelink section, the exported bundle
from NWK is calledmsg. On the second line, this bun-
dle is listed as an import to theMain unit. Theio bun-
dle comes from theProgram unit’s list of imports; sim-
ilarly, themain bundle that is implemented by theMain
unit is propagated to be an export from the compound
unit. If Knit is told to compile theProgram unit, then
the functions and variables imported byProgram will
be resolved by definitions from the environment outside
Knit’s world, e.g., the standard C library. Similarly, the
exports fromProgram will be made available to the en-
vironment.

2.3 Constraints

Knit provides a flexible model for component specifica-
tion and linking, thus making it easy to compose soft-
ware units in myriad ways. But even if every single link
in a system is “correct” according to local constraints
such as type safety, the systemas a wholemay be incor-
rect because it does not meet certain global constraints.

Consider the task of building an operating system from
components. Systems programmers are often concerned
about theexecution environmentof a piece of code, and a
simple but important aspect of an execution environment
is the distinction that most operating systems make be-
tweentop-half code — code called by a user process via
system calls — andbottom-halfcode — called by inter-
rupt handlers or soft interrupts. Top-half code, because
it is called by a user process, has access to the the calling
process’ context, e.g., the stack. In contrast, bottom-half
functions do not have access to any process context.

Thus, a bottom-half function must never call a (top-half)
function that requires a process context, such as sleeping
or locking operations. We would like to statically verify
that this property holds when we create an operating sys-
tem. Detecting this kind of error in a component-based
system requires a global view, because whether a func-
tion is top-half or bottom-half depends on what func-
tions it calls, and what functions call it. In other words,
bottom-halfness is atransitiveproperty: a function is a
bottom-half function if it is called by a bottom-half func-
tion or by an interrupt handler.

Knit helps programmers deal with these kinds of “non-
manifest” aspects of system composition with constraint

3

annotations that describe the properties of unit imports
and exports. Constraints can declared explicitly (e.g.,
that the functions within an export bundle are top-half)
or by description (e.g., that the unit’s exports have
the same halfness as the unit’s imports). At system
configuration-time, Knit propagates constraints to en-
sure that all are globally satisfied. If a constraint is not
satisfied, Knit prints a description of the error.

3 Units for Aspects

Units offer a clear solution to the problem of effectively
expressing conventional modularity.But we claim fur-
ther that units are a proper foundation for developing
the cross-cutting facets of a system in a modular fashion.
The essential ingredient provided by units is the ability
to take an arbitrary component and “wrap” it with an-
other component. In other words, because the links be-
tween components are explicit, we can modify a linking
graph as we choose by interposing new units where they
are needed to introduce aspect-like functionality. This
interposition can effectively insert code at the beginning
and/or end of every exported function from a set of com-
ponents, or it can be used to uniformly apply a class ex-
tension — in the form of a mixin — to each class im-
ported or exported by a set of components. In AOP ter-
minology, the interfaces between units are thejoin points
at which we may introduce code.

This approach to dealing with aspects is particularly
compelling for systems and middleware code. As dis-
cussed inSection 1, sometimes no clear line can be
drawn between modularity at the level of functional sub-
systems and modularity at the level of cross-cutting as-
pects. We therefore seek a framework that integrates
these two facets of systems modularity. We expect the
Knit approach to help deal with many different aspects
of systems code, including concurrency, isolation, and
real-time performance. We are currently exploring these
aspects in the context of the OSKit [7], a large collection
of components for building low-level systems.

Concurrency. In the OSKit, many components
are single-threaded because they were extracted from
single-threaded kernels such as Linux and BSD. How-
ever, as OSKit components, they are often used in multi-
threaded environments. When combining many compo-
nents with different concurrency requirements, it is ex-
tremely difficult to determine by inspection which com-
ponents need to be wrapped, or even which combina-
tions of components can be wrapped by a single concur-
rency wrapper. We expect Knit to help us solve these
problems. By annotating interfaces and components,
and then inserting concurrency adapters as needed, Knit

will help us to build systems that are assurably correct
with respect to their units’ concurrency requirements.

Isolation. Flexible control of component isolation and
protection is a novel property in the embedded and op-
erating systems worlds. Even modern production op-
erating systems implement at most three configurations
of this important aspect: no protection, multiple threads
sharing the same user process and address space, and en-
tirely separate user processes. There are many reasons
to want more flexible control: one may want to impose
resource limits on particular components, isolate buggy
components, or impose security restrictions on untrusted
code. Knit will help us impose these kinds of isolation
barriers on components in a flexible and reliable way.

Real-Time Behavior. Finally, we are interested in the
specification and assurance of real-time behavior. One
way to achieve real-time performance is to insert a small
real-time kernel “under” an existing operating system:
this is the approach taken by RT-Linux [2]. The real-time
kernel interposes on the interrupt handling and manipu-
lation routines in the host operating system, so that the
real-time kernel receives all hardware interrupts. This
approach is a natural fit with Knit’s ability to interpose
on component interfaces. A second approach to provid-
ing real-time behavior is to incorporate real-time func-
tionality into the main operating system. In an embed-
ded system, with a fixed set of real-time tasks, one would
like to reason about the requirements of the tasks in order
to see if they can be met: i.e., if the system has enough
resources to schedule the tasks correctly. We intend to
extend Knit’s constraint language in the future to sup-
port this kind of reasoning, e.g., to deal with numeric
constraints.

4 Improving Knit for Aspects

Units provide a plausible foundation for aspects-as-
components, but we need to extend Knit in certain ways
to handle aspects well. First, the linking language must
be extended so that it is easier to describe new link-
ing graphs (compound units) as modifications of exist-
ing units. Second, Knit must be enhanced to generate
(or help generate) the code for “wrapper” and “adapter”
units, to relieve programmers of this tedious task.

4.1 Unit Composition

Although explicitly specified linking for units has the ad-
vantage of giving the programmer complete control, it
has the drawback of substantially increasing a program-
mer’s work for linking a program. In the common case
that a collection of components can be linked in only one
way (because every import can match exactly one export

4

among the set of linked units), the linking programmer’s
work is redundant. In the future, we will extend Knit
to remove much of the burden of linking from the pro-
grammer, but still allow the programmer to take control
when necessary. Finding the “right point” between ex-
plicit and implicit control will be a major issue addressed
by this work.

The hierarchical composition of units is also problematic
in certain situations. Hierarchical linking can provide
valuable structure to a system, but it can also introduce
repetitive imports and exports that are propagated across
the levels of hierarchy. A related problem is that replac-
ing a unit deep in the hierarchy is difficult. To replace a
unit U, one might copy the definition of the compound
unit C in which U appears, and modify the new com-
pound unitC’ to replaceU with some other unit. Un-
fortunately, one must now “walk up the hierarchy” and
do the same forC itself: i.e., copy the units in whichC
appears to substituteC’, and so on.

To make replacing components easier, a future version
of Knit will support composition specifications that are
defined in terms of existing composition specifications,
but with certain components “overridden” by replace-
ment components [1, 3]. A subtyping relationship on
unit interfaces would ensure that such compositions can
be statically checked by comparing the overridden unit’s
interface with the overriding unit’s interface. It may even
be possible to extend the subtyping relationship to the
behavior aspects of a unit’s specification [9].

4.2 Wrapper Units

In addition to new support for modifying unit composi-
tions, we are now working to improve Knit so that it can
generate certain kinds of wrapper or adapter units auto-
matically. A wrapper unit is commonly used to imple-
ment certain idiomatic behaviors, e.g., to monitor, mod-
ify, or extend the wrapped unit’s interface. While the ba-
sic unit composition mechanism allows a programmer to
apply a wrapper to a set of components, manually wrap-
ping each component is often too unwieldy in practice.
Because many wrappers follow a pattern, the implemen-
tation of these wrappers can be automated. For example,
many conversion tasks involve surrounding every func-
tion exported by a set of units with a common wrapper.
(A single unit suffices for this purpose, instantiated once
for each exported function.) Knit will provide a straight-
forward way to automatically instantiate the wrapper for
every export. For more complicated cases, in which ev-
ery wrapper must tailored to a specific use, we intend to
incorporate a flexible code generation scheme into Knit,
so that Knit can create the implementations and unit def-
initions for the wrappers. Our previous experience with
a flexible stub compiler [4] will be useful in this area.

5 Conclusion

Knit is a new component definition and linking lan-
guage, designed to handle the “manifest” and “non-
manifest” aspects of systems and middleware code.
Component composition in Knit acts like aspect weav-
ing, and future improvements to Knit will increase its
utility for aspect-oriented programming.

Availability

Source and documentation for our Knit prototype is
available underhttp://www.cs.utah.edu/flux/.

References
[1] D. Ancona and E. Zucca. An algebraic approach to mix-

ins and modularity. In M. Hanus and M. Rodrı́guez-
Artalejo, editors,Proc. Conference on Algebraic and
Logic Programming, volume 1139 ofLecture Notes
in Computer Science, pages 179–193. Springer-Verlag,
1996.

[2] M. Barabanov and V. Yodaiken. Real-time Linux.Linux
Journal, 34, Feb. 1997.

[3] G. Bracha.The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance. Ph.D. thesis, Dept.
of Computer Science, University of Utah, Mar. 1992.

[4] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom.
Flick: A flexible, optimizing IDL compiler. InProc.
ACM SIGPLAN ’97 Conf. on Programming Language
Design and Implementation (PLDI), pages 44–56, Las
Vegas, NV, June 1997.

[5] M. Flatt. Programming Languages for Component Soft-
ware. PhD thesis, Rice University, June 1999.

[6] M. Flatt and M. Felleisen. Units: Cool units for
HOT languages. InProc. ACM SIGPLAN ’98 Conf.
on Programming Language Design and Implementation
(PLDI), pages 236–248, June 1998.

[7] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A substrate for OS and
language research. InProc. of the 16th ACM Symposium
on Operating Systems Principles, pages 38–51, St. Malo,
France, Oct. 1997.

[8] S. P. Harbison.Modula-3. Prentice Hall, 1991.

[9] B. H. Liskov and J. M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages
and Systems, 16(6):1811–1841, Nov. 1994.

[10] J. G. Mitchell, W. Mayberry, and R. Sweet.Mesa Lan-
guage Manual, 1979.

[11] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide.
Knit: Component composition for systems software. In
Proc. of the Fourth Symposium on Operating Systems
Design and Implementation, pages 347–360, San Diego,
CA, Oct. 2000. USENIX Association.

5

http://www.cs.utah.edu/flux/

	Abstract
	Introduction
	Knit
	Building Blocks: Atomic Units
	Linking: Compound Units
	Constraints

	Units for Aspects
	Improving Knit for Aspects
	Unit Composition
	Wrapper Units

	Conclusion
	Availability
	References

