Standard Libraries
for the

Haskell 98
Programming Language

1 February 1999

Simon Peyton Jones® [editor]
John Hughes?® [editor]
Lennart Augustsson?

Dave Barton”

Brian Boutel?
Warren Burton®

Joseph Fasel®
Kevin Hammond?

Ralf Hinze'?
Paul Hudak'
Thomas Johnsson
Mark Jones®
John Launchbury!*
Erik Meijer!?
John Peterson!
Alastair Reid!
Colin Runciman'
Philip Wadler!!

3

3

Authors’ affiliations: (1) Yale University (2) University of St. Andrews
(3) Chalmers University of Technology (4) Victoria University of Wellington
(5) Simon Fraser University (6) Los Alamos National Laboratory (7) Inter-
metrics (8) Microsoft Research, Cambridge (9) University of Nottingham
(10) Utrecht University (11) Bell Labs (12) University of Bonn (13) York
University (14) Oregon Graduate Institute

Contents

1 Introduction

2 Rational Numbers
2.1 Library Ratio

3 Complex Numbers
3.1 Library Complex

4 Numeric

4.1 Library Numeric

5 Indexing Operations
5.1 Deriving Instances of Ix
5.2 Library Ix

6 Arrays

6.1 Array Construction
6.2 Incremental Array Updates
6.3 Derived Arrays
6.4 Library Array

7 List Utilities
7.1 Indexing lists
7.2 “Set” operations
7.3 List transformations
7.4 unfoldr
7.5 Predicates
7.6 The “By” operations
7.7 The “generic” operations
7.8 Library List

8 Maybe Utilities
8.1 Library Maybe

9 Character Utilities
9.1 Library Char

10 Monad Ugtilities
10.1 Naming conventions
10.2 Class MonadPlus
10.3 Functions
10.4 Library Monad

CONTENTS

CONTENTS

11 Input/Output

11.1 I/O Errors
11.2 Files and Handles
11.3 Opening and Closing Files
11.4 Determining the Size of a File
11.5 Repositioning Handles
11.6 Handle Properties
11.7 Text Input and Output
11.8 Examples

12 Directory Functions
13 System Functions

14 Dates and Times

14.1 Library Time

15 Locale

15.1 Library Locale

16 CPU Time

17 Random Numbers

17.1 The RandomGen class, and the StdGen generator

17.2 The Randomclass

17.3 The global random number generator

Index

53
95
o6
o8
99
60
61
61
62

64

67

70
72

76
77

78

80
81
82
83

85

PREFACE 1

Preface

This document defines the standard libraries for Haskell 98.

The libraries presented here represent a selection of basic functionality that is expected to
be useful to many Haskell programmers. Most implementations provide further libraries
which are not a recognized part of the Haskell standard.

The latest version of this report, as well many other available libraries, can be found on the
web at http://haskell.org.

We would like to express our thanks to those who have contributed directly or indirectly
to this report without being named as authors, including Olaf Chitil, Tony Davie, Sigbjorn
Finne, Andy Gill, Mike Gunter, Fergus Henderson, Kent Karlsson, Sandra Loosemore,
Graeme Moss, Sven Panne, Keith Wansbrough.

2 1 INTRODUCTION

1 Introduction

This document defines the standard libraries for Haskell 98. Like the Prelude, these libraries
are a required part of a Haskell implementation. Unlike the Prelude, however, these modules
must be explicitly imported into scope.

When possible, library functions are described solely by executable Haskell code. Func-
tions which require implementation-dependent primitives are represented by type signatures
without definitions. Some data types are implementation-dependent: these are indicated
by comments in the source.

The code found here is a specification, rather than an implementation. Implementations
may choose more efficient versions of these functions. However, all properties of these
specifications must be preserved, including strictness properties.

Classes defined in libraries may be derivable. This report includes the derivation of such
classes when appropriate. When Prelude types are instances of derivable library classes a
commented empty instance declaration is used. The comment, “as derived”, indicates that
the instance is the same as would have been generated by a deriving in the Prelude type
declaration.

The following table summarises the fixities of all the operators introduced by the standard
libraries:

Prec- || Left associative Non-associative | Right associative
edence | operators operators operators
9 || Array.!, Array.//
7 || Ratio.%
6 Complex. :+
Y List.\\

Table 1: Precedences and fixities of library operators

2 Rational Numbers

module Ratio (
Ratio, Rational, (%), numerator, denominator, approxRational) where

infixl 7 %

data (Integral a) => Ratio a = ...

type Rational = Ratio Integer

¢)) :: (Integral a) => a -> a -> Ratio a
numerator, denominator :: (Integral a) => Ratio a -> a
approxRational :: (RealFrac a) => a -> a -> Rational
instance (Integral a) => Eq (Ratio a) where
instance (Integral a) => Ord (Ratio a) where
instance (Integral a) => Num (Ratio a) where
instance (Integral a) => Real (Ratio a) where

instance (Integral a) => Fractional (Ratio a) where
instance (Integral a) => RealFrac (Ratio a) where

instance (Integral a) => Enum (Ratio a) where
instance (Read a,Integral a) => Read (Ratio a) where
instance (Integral a) => Show (Ratio a) where

For each Integral type t, there is a type Ratio ¢ of rational pairs with components of type
t. The type name Rational is a synonym for Ratio Integer.

Ratio is an instance of classes Eq, Ord, Num, Real, Fractional, RealFrac, Enum, Read, and
Show. In each case, the instance for Ratio ¢ simply “lifts” the corresponding operations
over t. If ¢ is a bounded type, the results may be unpredictable; for example Ratio Int
may give rise to integer overflow even for rational numbers of small absolute size.

The operator (%) forms the ratio of two integral numbers, reducing the fraction to terms
with no common factor and such that the denominator is positive. The functions numerator
and denominator extract the components of a ratio; these are in reduced form with a
positive denominator. Ratio is an abstract type. For example, 12 % 8 is reduced to 3/2
and 12 % (-8) is reduced to (-3)/2.

The approxRational function, applied to two real fractional numbers x and epsilon,
returns the simplest rational number within the open interval (x — epsilon, x + epsilon).
A rational number n/d in reduced form is said to be simpler than another n'/d" if |n| < |n/|
and d < d'. Note that it can be proved that any real interval contains a unique simplest
rational.

2.1 Library Ratio

2 RATIONAL NUMBERS

-- Standard functions on rational numbers

module Ratio (

Ratio, Rational, (%), numerator, denominator, approxRational) where

infixl 7 %
prec =7 :: Int

data (Integral a)
type Rational

(%)
numerator, denominator
approxRational

=> Ratio a = la :% !'a deriving (Eq)

Ratio Integer

(Integral a) => a -> a -> Ratio a
(Integral a) => Ratio a -> a
(RealFrac a) => a -> a -> Rational

-- "reduce" is a subsidiary function used only in this module.
-- It normalises a ratio by dividing both numerator
-- and denominator by their greatest common divisor.

-- E.g., 12 ‘reduce‘ 8

- 12 ‘reduce‘ (-8)

reduce 0

reduce x y

xhy
numerator (x :% _)
denominator (_ :% y)

instance (Integral a)
(x:%y) <= (x’:%y”)
(x:%y) < ((x’:%y?)

instance (Integral a)
(x:%hy) + (x2:%y?)
(x:%y) * (x?:%y”)
negate (x:%y)
abs (x:%y)
signum (x:%y)
fromInteger x

instance (Integral a)
toRational (x:%y)

= 3 :% 2
= 3 :% (-2)

error "Ratio.% : zero denominator"
(x ‘quot® d) :% (y ‘quot‘ d)
where d = gcd x y

reduce (x * signum y) (abs y)

X

y

Ord (Ratio a) where
X *xy’ <=x’ %y
x*y’< x’*y

Num (Ratio a) where
reduce (xxy’ + x’xy) (y*y’)
reduce (x * x’) (y * y?)
(-x) :hy

abs x %y

signum x :% 1

fromInteger x :% 1

Real (Ratio a) where
toInteger x :% tolnteger y

2.1 Library Ratio 5

instance (Integral a) => Fractional (Ratio a) where
(x:%hy) / (x’:%y?) (xxy?) % (y*x’)
recip (x:%y) if x < 0 then (-y) :% (-x) else y :% x
fromRational (x:%y) fromInteger x :% fromInteger y

instance (Integral a) => RealFrac (Ratio a) where
properFraction (x:%y) = (fromIntegral q, r:%y)
where (q,r) = quotRem x y

instance (Integral a) => Enum (Ratio a) where

toEnum = fromIntegral

fromEnum = fromInteger . truncate -- May overflow

enumFrom = numericEnumFrom —— These numericEnumXXX functions
enumFromThen = numericEnumFromThen —— are as defined in Prelude.hs
enumFromTo = numericEnumFromTo -- but not exported from it!
enumFromThenTo = numericEnumFromThenTo

instance (Read a, Integral a) => Read (Ratio a) where
readsPrec p = readParen (p > prec)
(\r -> [hy,u) | (x,8) <- reads r,
("%",t) <- lex s,
(y,u) <-reads t 1)

instance (Integral a) => Show (Ratio a) where
showsPrec p (x:%y) showParen (p > prec)
(shows x . showString " % " . shows y)

approxRational x eps simplest (x-eps) (x+eps)

where simplest x y | y < x = simplest y x
| x ==y = xr
| x>0 = simplest’ n d n’ d’
l y<0 = - simplest’ (-n’) d’ (-n) d
| otherwise = 0 :% 1

where xr@(n:%d) = toRational x

(n’:%d’) = toRatiomal y
simplest’ n d n’ 4’ -— assumes 0 < n¥%d < n’%d’
| r == = q %1
|l q /= q’ = (g+1) :% 1
| otherwise = (g*n’’+d’’) :% n’’
where (q,r) = quotRem n d
(q’,r?) = quotRem n’ 4’
(n’?:%d’’) = simplest’ d’ r’ d r

6 3 COMPLEX NUMBERS

3 Complex Numbers

module Complex (
Complex((:+)), realPart, imagPart, conjugate,
mkPolar, cis, polar, magnitude, phase) where

infix 6 :+

data (RealFloat a) => Complex a = !a :+ la

realPart, imagPart :: (RealFloat a) => Complex a -> a
conjugate :: (RealFloat a) => Complex a -> Complex a
mkPolar :: (RealFloat a) => a -> a -> Complex a
cis :: (RealFloat a) => a -> Complex a
polar :: (RealFloat a) => Complex a -> (a,a)
magnitude, phase :: (RealFloat a) => Complex a -> a
instance (RealFloat a) => Eq (Complex a) where ...
instance (RealFloat a) => Read (Complex a) where ...
instance (RealFloat a) => Show (Complex a) where ...
instance (RealFloat a) => Num (Complex a) where ...

instance (RealFloat a) => Fractional (Complex a) where ...
instance (RealFloat a) => Floating (Complex a) where ...

Complex numbers are an algebraic type. The constructor (:+) forms a complex number
from its real and imaginary rectangular components. This constructor is strict: if either
the real part or the imaginary part of the number is L, the entire number is 1. A complex
number may also be formed from polar components of magnitude and phase by the function
mkPolar. The function cis produces a complex number from an angle ¢. Put another way,
cis t is a complex value with magnitude 7 and phase ¢ (modulo 27).

The function polar takes a complex number and returns a (magnitude, phase) pair in
canonical form: The magnitude is nonnegative, and the phase, in the range (—m, 7]; if the
magnitude is zero, then so is the phase.

The functions realPart and imagPart extract the rectangular components of a complex
number and the functions magnitude and phase extract the polar components of a complex
number. The function conjugate computes the conjugate of a complex number in the usual
way.

The magnitude and sign of a complex number are defined as follows:

abs z
signum O
signum z@(x:+y)

magnitude z :+ 0
0
x/r :+ y/r where r = magnitude z

That is, abs z is a number with the magnitude of z, but oriented in the positive real

3.1 Library Complex

direction, whereas signum z has the phase of z, but unit magnitude.

3.1 Library Complex

module Complex(Complex((:+)), realPart, imagPart, conjugate, mkPolar,
cis, polar, magnitude, phase) where

infix 6 :+

data (RealFloat a) => Complex a = 'a :+ !la deriving (Eq,Read,Show)
realPart, imagPart :: (RealFloat a) => Complex a -> a

realPart (x:+y) = x

imagPart (x:+y) = y

conjugate :: (RealFloat a) => Complex a -> Complex a

conjugate (x:+y) = x :+ (-y)

mkPolar :: (RealFloat a) => a -> a -> Complex a

mkPolar r theta r * cos theta :+ r * sin theta

cis :: (RealFloat a) => a -> Complex a
cis theta = cos theta :+ sin theta
polar :: (RealFloat a) => Complex a -> (a,a)
polar z = (magnitude z, phase z)
magnitude :: (RealFloat a) => Complex a -> a
magnitude (x:+y) = scaleFloat k
(sqrt ((scaleFloat mk x)"2 + (scaleFloat mk y)“~2))
where k = max (exponent x) (exponent y)
mk = - k
phase :: (RealFloat a) => Complex a -> a

phase (0 :+ 0) =0
phase (x :+ y) = atan2 y x

instance (RealFloat a) => Num (Complex a) where

(x:4y) + (x7:4y7) = (x+x’) + (y+y°)

(x:4y) - (x7:+y?) = (x-x’) :+ (y-y°)

(x:+y) * (x7:+y’) = (xxx’-y*xy’) :+ (xxy’+y*x’)
negate (x:+y) = negate x :+ negate y

abs z = magnitude z :+ O

signum O = 0

signum z@(x:+y) x/r :+ y/r where r = magnitude z
fromInteger n = fromInteger n :+ 0

8 3 COMPLEX NUMBERS

l
\

instance (RealFloat a)
(x:+y) / (x7:4y?)

Fractional (Complex a) where
(X*X’ z+y*yz z) / d :+ (Y*X’ ’—X*y’ z) / d

where x’’ = scaleFloat k x’
y’’ = scaleFloat k y’
k = - max (exponent x’) (exponent y’)
d = X’*X” + y)*y)’

fromRational a fromRational a :+ O

instance (RealFloat a) => Floating (Complex a) where

pi = pi :+0

exp (x:+y) = expx * COS y :+ expx * sin y
where expx = exp x

log z = log (magnitude z) :+ phase z

sqrt O = 0

u :+ (if y < O then -v else v)

where (u,v) = if x < 0 then (v’,u’) else (u’,v’)
abs y / (u’*2)

sqrt ((magnitude z + abs x) / 2)

sqrt z@(x:+y)

VJ

u)

sin (x:+y)
cos (x:+y)

sin x * cosh y :+ cos x * sinh y
cos x * cosh y :+ (- sin x * sinh y)

tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
where sinx = sin x
COSX = COS X
sinhy = sinh y
coshy = cosh y
sinh (x:+y) = cos y * sinh x :+ sin y * cosh x
cosh (x:+y) = cos y * cosh x :+ sin y * sinh x
tanh (x:+y) = (cosy#*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
where siny = sin y
cosy = cos y
sinhx = sinh x
coshx = cosh x
asin z@(x:+y) = y’:+(-x’)
where (x’:+y’) = log (((-y):+x) + sqrt (1 - zxz))
acos z0@(x:+y) = y’’:+(-x’7)
where (x’?:+y?’) = log (z + ((-y’):+x’))
(x?:+y’) = sqrt (1 - z*z)
atan z@(x:+y) = y’:+(-x’)

where (x’:+y’) = log (((1-y):+x) / sqrt (1l+z*z))

asinh z = log (z + sqrt (l+z*z))
acosh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))
atanh z = log ((1+z) / sqrt (1-z*z))

4 Numeric

module Numeric(fromRat,

showSigned, showlnt,

readSigned, readInt,

readDec, readOct, readHex,

floatToDigits,

showEFloat, showFFloat, showGFloat, showFloat,

readFloat, lexDigits) where
fromRat (RealFloat a) => Rational -> a
showSigned (Real a) => (a -> ShowS) -> Int -> a -> ShowS
showInt Integral a => a -> ShowS
readSigned (Real a) => ReadS a -> ReadS a
readInt (Integral a) =>

a -> (Char -> Bool) -> (Char -> Int) -> ReadS a

readDec (Integral a) => ReadS a
readOct (Integral a) => ReadS a
readHex (Integral a) => ReadS a
showEFloat (RealFloat a) => Maybe Int -> a -> ShowS
showFFloat (RealFloat a) => Maybe Int -> a -> ShowS
showGFloat (RealFloat a) => Maybe Int -> a -> ShowS
showFloat (RealFloat a) => a -> ShowS
floatToDigits (RealFloat a) => Integer -> a -> ([Int], Int)
readFloat (RealFloat a) => ReadS a
lexDigits :: ReadS String

This library contains assorted numeric functions, many of which are used in the standard
Prelude. Most are self-explanatory. The floatToDigits function converts a floating point
value into a series of digits and an exponent of a selected base. This is used to build a set
of floating point formatting functions.

4.1 Library Numeric

module Numeric(fromRat,
showSigned, showlInt,
readSigned, readlInt,
readDec, readOct, readHex,
floatToDigits,
showEFloat, showFFloat, showGFloat, showFloat,
readFloat, lexDigits) where

10 4 NUMERIC

import Char
import Ratio
import Array

-- This converts a rational to a floating. This should be used in the
—-- Fractional instances of Float and Double.

fromRat :: (RealFloat a) => Ratiomnal -> a

fromRat x =
if x == 0 then encodeFloat 0 O -- Handle exceptional cases
else if x < 0 then - fromRat’ (-x) -- first.

else fromRat’ x

-- Conversion process:
-- Scale the rational number by the RealFloat base until

-- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat).

—-- Then round the rational to an Integer and encode it with the exponent
—-- that we got from the scaling.

-- To speed up the scaling process we compute the log2 of the number to get

-- a first guess of the exponent.

fromRat’ :: (RealFloat a) => Rational -> a

fromRat’ x = r

where b = floatRadix r
p = floatDigits r
(minExpO, _) = floatRange r
minExp = minExpO - p -- the real minimum exponent
xMin = toRational (expt b (p-1))
xMax = toRational (expt b p)
pO0 = (integerLogBase b (numerator x) -
integerLogBase b (denominator x) - p) ‘max‘ minExp

f = if p0 < O then 1 % expt b (-p0) else expt b p0 % 1
(x’, p’) = scaleRat (toRational b) minExp xMin xMax p0 (x / £)
r = encodeFloat (round x’) p’

-- Scale x until xMin <= x < xMax, or p (the exponent) <= minExp.
scaleRat :: Rational -> Int -> Rational -> Ratiomnal ->
Int -> Rational -> (Rational, Int)
scaleRat b minExp xMin xMax p x =
if p <= minExp then
(x, p)
else if x >= xMax then
scaleRat b minExp xMin xMax (p+1) (x/b)
else if x < xMin then
scaleRat b minExp xMin xMax (p-1) (x*b)
else
(x, p)

4.1 Library Numeric 11

-- Exponentiation with a cache for the most common numbers.
minExpt = 0::Int
maxExpt 1100::Int
expt :: Integer -> Int -> Integer
expt base n =
if base == 2 && n >= minExpt &% n <= maxExpt then
expts!n
else
base™n

expts :: Array Int Integer
expts = array (minExpt,maxExpt) [(n,2°n) | n <- [minExpt .. maxExpt]]

-- Compute the (floor of the) log of i in base b.
-- Simplest way would be just divide i by b until it’s smaller then b,
-— but that would be very slow! We are just slightly more clever.
integerLogBase :: Integer -> Integer -> Int
integerlLogBase b i =
if i < b then
0
else
-- Try squaring the base first to cut down the number of divisions.
let 1 = 2 * integerLogBase (b*b) i
doDiv :: Integer -> Int -> Int
doDiv i 1 = if i < b then 1 else doDiv (i ‘div‘ b) (1+1)
in doDiv (i ‘div‘ (b"1)) 1

—-- Misc utilities to show integers and floats

showSigned :: Real a => (a -> ShowS) -> Int -> a -> ShowS
showSigned showPos p x | x < 0 = showParen (p > 6)
(showChar ’-’ . showPos (-x))

| otherwise = showPos x

-- showInt is used for positive numbers only

showInt :: Integral a => a -> ShowS
showInt n r | n < 0 = error "Numeric.showInt: can’t show negative numbers"
| otherwise =

let (n’,d) = quotRem n 10
r’ toEnum (fromEnum ’0’ + fromIntegral d) : r
in if n’ == 0 then r’ else showInt n’ r’

12 4 NUMERIC

readSigned :: (Real a) => ReadS a -> ReadS a
readSigned readPos = readParen False read’
where read’ r = read’’ r ++
[(-x,t) | ("-",s) <- lex r,
(x,t) <- read’’ s]
read’’ r = [(n,s) | (str,s) <- lex r,
(n,"") <- readPos str]

-- readInt reads a string of digits using an arbitrary base.
-- Leading minus signs must be handled elsewhere.

readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a
readInt radix isDig digTolInt s =
[(foldll (\n d -> n * radix + d) (map (fromIntegral . digToInt) ds), r)
| (ds,r) <- nonnull isDig s]

-- Unsigned readers for various bases
readDec, readOct, readHex :: (Integral a) => ReadS a
readDec = readInt 10 isDigit digitTolnt

readOct = readInt 8 isOctDigit digitTolnt

readHex = readInt 16 isHexDigit digitTolnt

showEFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showFFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showGFloat :: (RealFloat a) => Maybe Int -> a -> ShowS
showFloat :: (RealFloat a) => a -> ShowS

showEFloat d x
showFFloat d x
showGFloat d x
showFloat

showString (formatRealFloat FFExponent d x)
showString (formatRealFloat FFFixed d x)
showString (formatRealFloat FFGeneric d x)
showGFloat Nothing

-- These are the format types. This type is not exported.

data FFFormat = FFExponent | FFFixed | FFGeneric

4.1 Library Numeric 13

formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String
formatRealFloat fmt decs x = s
where base = 10
s = if isNaN x then
"NaN"
else if isInfinite x then
if x < 0 then "-Infinity" else "Infinity"
else if x < 0 || isNegativeZero x then
’-7 : doFmt fmt (floatToDigits (toInteger base) (-x))
else
doFmt fmt (floatToDigits (toInteger base) x)
doFmt fmt (is, e) =
let ds = map intToDigit is
in case fmt of
FFGeneric ->
doFmt (if e < 0 || e > 7 then FFExponent else FFFixed)
(is, e)
FFExponent —>
case decs of
Nothing ->
case ds of
[’0°] -> "0.0e0"
[d] ->d : ".0e" ++ show (e-1)
d:ds ->d : ’.’ : ds ++ ’e’:show (e-1)
Just dec ->
let dec’ = max dec 1 in
case is of
[0] -> °0’:”.’:take dec’ (repeat ’0’) ++ "eQ"
_ =
let (ei, is’) = roundTo base (dec’+1) is
d:ds = map intToDigit
(if ei > 0 then init is’ else is’)
in d:’.’:ds ++ "e" ++ show (e-1+ei)

FFFixed —>
case decs of
Nothing ->
let £ 0 s ds = mkO s ++ "." ++ mkO ds
f n s nn = f (n_l) (S++IIOII) nn
fns (d:ds) = f (n-1) (s++[d]) ds
ka nn = IIOII
mkO s = s
in f e "" ds

Just dec ->
let dec’ = max dec O in

14 4 NUMERIC

if e >= 0 then
let (ei, is’) = roundTo base (dec’ + e) 1is
(1s, rs) = splitAt (etei) (map intToDigit is’)
in (if null 1s then "0" else 1s) ++
(if null rs then "" else ’.’ : rs)
else
let (ei, is’) = roundTo base dec’
(replicate (-e) 0 ++ is)
d : ds = map intToDigit
(if ei > O then is’ else 0:is’)
in d: ’.” : ds

roundTo :: Int -> Int -> [Int] -> (Int, [Int])
roundTo base d is = case f d is of
(0, is) -> (0, is)
(1, is) -> (1, 1 : is)
where b2 = base ‘div‘ 2

fn [l = (0, replicate n 0)
f0 (i:.) = (if i >= b2 then 1 else 0, [])
fd (i:is) =

let (c, ds) = f (d-1) is
i’ =c+ i
in if i’ == base then (1, 0:ds) else (0, i’:ds)

-- Based on "Printing Floating-Point Numbers Quickly and Accurately"
-— by R.G. Burger and R. K. Dybvig, in PLDI 96.
-- This version uses a much slower logarithm estimator. It should be improved.

-- This function returns a list of digits (Ints in [0..base-1]) and an
-- exponent.

floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)

4.1 Library Numeric 15

floatToDigits _ 0 = ([0], 0)
floatToDigits base x =
let (f0, e0) = decodeFloat x
(minExp0O, _) = floatRange x
p = floatDigits x
b = floatRadix x
minExp = minExpO - p -- the real minimum exponent
—-- Haskell requires that f be adjusted so denormalized numbers
-- will have an impossibly low exponent. Adjust for this.
(f, e) = let n = minExp - €0
in if n > O then (f0 ‘div‘ (b"n), e0+n) else (f0, e0)

(r, s, mUp, mDn) =
if e >= 0 then
let be = b7e in
if £ == b~ (p-1) then
(f*bexb*2, 2%b, bexb, b)
else
(f*xbex2, 2, be, be)
else
if e > minExp && f == b~ (p-1) then
(f*b*2, b~ (-e+1)*2, b, 1)
else
(f*2, b~ (-e)*2, 1, 1)

let kO =
if b==2 && base==10 then
-- logBase 10 2 is slightly bigger than 3/10 so
the following will err on the low side. Ignoring
-- the fraction will make it err even more.
—-- Haskell promises that p-1 <= logBase b f < p.
(p -1+ e0) 3 ‘div‘ 10
else
ceiling ((log (fromInteger (f+1)) +
fromInt e * log (fromInteger b)) /
log (fromInteger base))

fixup n =
if n >= 0 then
if r + mUp <= expt base n * s then n else fixup (n+1)
else
if expt base (-n) * (r + mUp) <= s then n
else fixup (n+1)
in fixup kO

gen ds rn sN mUpN mDnN =

16 4 NUMERIC

let (dn, rn’) = (rn * base) ‘divMod‘ sN
mUpN’ mUpN * base
mDnN’ = mDnN * base
in case (rn’ < mDnN’, rn’ + mUpN’ > sN) of
(True, False) -> dn : ds
(False, True) -> dn+l : ds
(True, True) -> if rn’ * 2 < gN then dn : ds else dn+l : ds
(False, False) -> gen (dn:ds) rn’ sN mUpN’ mDnN’

rds =
if k >= 0 then
gen [] r (s * expt base k) mUp mDn
else
let bk = expt base (-k)
in gen [1 (r * bk) s (mUp * bk) (mDn * bk)
in (map toInt (reverse rds), k)

-- This floating point reader uses a less restrictive syntax for floating
-- point than the Haskell lexer. The ‘.’ is optional.

readFloat :: (RealFloat a) => ReadS a
readFloat r = [(fromRational ((n%1)*10~"~(k-d)),t) | (n,d,s) <- readFix r,
(k,t) <- readExp s]
where readFix r = [(read (ds++ds’), length ds’, t)
| (ds,d) <- lexDigits r,
(ds’,t) <- lexFrac 4d]

lexFrac (’.’:ds)

lexDigits ds

lexFrac s = [("",s)]
readExp (e:s) | e ‘elem‘ "eE" = readExp’ s
readExp s = [(0,s)]

readExp’ (’-7:s) [(-k,t) | (k,t) <- readDec s]
readExp’ (’+’:s) = readDec s

readExp’ s = readDec s
lexDigits :: ReadS String
lexDigits = nonnull isDigit
nonnull :: (Char -> Bool) -> ReadS String

nonnull p s

[(cs,t) | (cs@(_:_),t) <- [span p sll

17

5 Indexing Operations

module Ix (Ix(range, index, inRange), rangeSize) where
class (0Ord a) => Ix a where

range :: (a,a) => [al

index :: (a,a) > a —> Int

inRange :: (a,a) => a -> Bool
rangeSize :: (Ix a) => (a,a) -> Int
instance Ix Char where ...
instance Ix Int where ...
instance Ix Integer where ...
instance (Ix a, Ix b) => Ix (a,b) where ...
-- et cetera
instance Ix Bool where ...
instance Ix Ordering where ...

The Ix class is used to map a continuous subrange of values in a type onto integers. It
is used primarily for array indexing (see Section 6). The Ix class contains the methods
range, index, and inRange. The index operation maps a bounding pair, which defines the
lower and upper bounds of the range, and a subscript, to an integer. The range operation
enumerates all subscripts; the inRange operation tells whether a particular subscript lies in
the range defined by a bounding pair.

An implementation is entitled to assume the following laws about these operations:
range (1,u) !! index (l,u) i == i -- when i is in range

inRange (1,u) i == i ‘elem‘ range (1,u)

5.1 Deriving Instances of Ix

Derived instance declarations for the class Ix are only possible for enumerations (i.e. da-
tatypes having only nullary constructors) and single-constructor datatypes, including arbi-
trarily large tuples, whose constituent types are instances of Ix.

e For an enumeration, the nullary constructors are assumed to be numbered left-to-right
with the indices being 0 to n — 1 inclusive. This is the same numbering defined by
the Enum class. For example, given the datatype:

data Colour = Red | Orange | Yellow | Green | Blue | Indigo | Violet

we would have:

18 5 INDEXING OPERATIONS

instance (Ix a, Ix b) => Ix (a,b) where
range ((1,1°),(u,u’))
= [(i,i’) | i <- range (1,u), i’ <- range (1’,u’)]
index ((1,1°),(u,u’)) (i,i’)
= index (1l,u) i * rangeSize (1’,u’) + index (1’,u’) i’
inRange ((1,1’),(u,u’)) (i,i’)
= inRange (1,u) i && inRange (1’,u’) i’

-- Instances for other tuples are obtained from this scheme:

-- instance (Ix al, Ix a2, ... , Ix ak) => Ix (al,a2,...,ak) where
- range ((11,12,...,1k), (ul,u2,...,uk)) =

-- [(i1,i2,...,ik) | il <- range (11,ul),

- i2 <- range (12,u2),

- ik <- range (1lk,uk)]

- index ((11,12,...,1k), (ul,u2,...,uk)) (i1,i2,...,ik) =
- index (1lk,uk) ik + rangeSize (1lk,uk) * (

- index (1k-1,uk-1) ik-1 + rangeSize (1k-1,uk-1) * (
- index (11,ul)))

- inRange ((11,12,...1k),(ul,u2,...,uk)) (il1,i2,...,ik) =

- inRange (11,ul) il && inRange (12,u2) i2 &%
-- ... &% inRange (1k,uk) ik

Figure 1: Derivation of Ix instances

range (Yellow,Blue) == [Yellow,Green,Blue]
index (Yellow,Blue) Green == 1
inRange (Yellow,Blue) Red == False

e For single-constructor datatypes, the derived instance declarations are as shown for

tuples in Figure 1.

5.2 Library Ix

5.2 Library Ix

module Ix (Ix(range, index, inRange), rangeSize) where

class (0Ord a) => Ix a where

range
index

inRange

rangeSize ::
rangeSize b@(1l,h) | null (range b)
| otherwise

Ix a => (a,

(a,a) => [al
(a,a) —> a -> Int
(a,a) -> a -> Bool

a) -> Int

0
index b h + 1

-- NB: replacing "null (range b)" by "1 > h" fails if
-- the bounds are tuples. For example,

- 2,1) >

-- but

instance

Ix Char where

range (m,n)
index b@(c,c’) ci

inRange b ci
otherwise

inRange (c,c’) i

instance

Ix Int where

range (m,n)
index b@(m,n) i

inRange b i
otherwise

inRange (m,n) i

instance

(1,2),

range ((2,1),(1,2)) = []

= [m..n]

= fromEnum ci - fromEnum c
error "Ix.index: Index out of range."
c<=1&& i<=¢’

[m..n]

i-m
= error "Ix.index: Index out of range."
m<=1& i<=n

Ix Integer where

range (m,n)
index b@(m,n) i

inRange b i
otherwise

inRange (m,n) i

instance
instance
instance
instance

(Ix a,Ix b) =>
Ix Bool
Ix Ordering

Ix O

= [m..n]

fromInteger (i - m)
= error "Ix.index: Index out of range."
m<=1& i<=n

Ix (a, b) —- as derived, for all tuples
—— as derived
-— as derived
—— as derived

20 6 ARRAYS
6 Arrays
module Array (
module Ix, -- export all of Ix for convenience
Array, array, listArray, (!), bounds, indices, elems, assocs,
accumArray, (//), accum, ixmap) where
import Ix
infixl 9 !, //
data (Ix a) => Array a b = ... —-- Abstract
array (Ix a) => (a,a) -> [(a,b)] -> Array a b
listArray (Ix a) => (a,a) -> [b] -> Array a b
@D) (Ix a) => Array a b -> a ->b
bounds (Ix a) => Array a b -> (a,a)
indices (Ix a) => Array a b -> [a]
elems (Ix a) => Array a b -> [b]
assocs (Ix a) => Array a b -> [(a,b)]
accumArray (Ix a) => (b -> ¢c -> b) -> b -> (a,a) > [(a,c)]
-> Array a b
7)) (Ix a) => Array a b -> [(a,b)] -> Array a b
accum (Ix a) => (b => ¢ => b) -> Array a b -> [(a,c)]
-> Array a b
ixmap (Ix a, Ix b) => (a,a) > (a -> b) -> Array b c
-> Array a c
instance Functor (Array a) where ...
instance (Ix a, Eq b) => Eq (Array a b) where ...
instance (Ix a, Ord b) => Ord (Array a b) where ...
instance (Ix a, Show a, Show b) => Show (Array a b) where ...
instance (Ix a, Read a, Read b) => Read (Array a b) where ...

Haskell provides indexable arrays, which may be thought of as functions whose domains are
isomorphic to contiguous subsets of the integers. Functions restricted in this way can be
implemented efficiently; in particular, a programmer may reasonably expect rapid access to
the components. To ensure the possibility of such an implementation, arrays are treated as
data, not as general functions.

Since most array functions involve the class Ix, this module is exported from Array so that
modules need not import both Array and Ix.

6.1 Array Construction 21

-- Scaling an array of numbers by a given number:

scale :: (Num a, Ix b) => a -> Array b a -> Array b a

scale x a = array b [(i, a!i * x) | i <- range b]
where b = bounds a

-- Inverting an array that holds a permutation of its indices
invPerm :: (Ix a) => Array a a -> Array a a
invPerm a = array b [(a!i, i) | i <- range b]

where b = bounds a

-- The inner product of two vectors
inner :: (Ix a, Num b) => Array a b -> Array a b > b
inner v w = if b == bounds w
then sum [v!i * w!i | i <- range b]
else error "inconformable arrays for inner product"
where b = bounds v

Figure 2: Array examples

6.1 Array Construction

If a is an index type and b is any type, the type of arrays with indices in a and elements in b
is written Array a b. An array may be created by the function array. The first argument
of array is a pair of bounds, each of the index type of the array. These bounds are the lowest
and highest indices in the array, in that order. For example, a one-origin vector of length
10 has bounds (1,10), and a one-origin 10 by 10 matrix has bounds ((1,1),(10,10)).

The second argument of array is a list of associations of the form (index, value). Typically,
this list will be expressed as a comprehension. An association (i, x) defines the value of
the array at index i to be x. The array is undefined (i.e. L) if any index in the list is out of
bounds. If any two associations in the list have the same index, the value at that index is
undefined (i.e. 1). Because the indices must be checked for these errors, array is strict in
the bounds argument and in the indices of the association list, but nonstrict in the values.
Thus, recurrences such as the following are possible:

a = array (1,100) ((1,1) : [(i, 1 * at(i-1)) | i <- [2..100]1)

Not every index within the bounds of the array need appear in the association list, but the
values associated with indices that do not appear will be undefined. Figure 2 shows some
examples that use the array constructor.

The (!) operator denotes array subscripting. The bounds function applied to an array
returns its bounds. The functions indices, elems, and assocs, when applied to an array,
return lists of the indices, elements, or associations, respectively, in index order. An array
may be constructed from a pair of bounds and a list of values in index order using the
function listArray.

22 6 ARRAYS

If, in any dimension, the lower bound is greater than the upper bound, then the array is
legal, but empty. Indexing an empty array always gives an array-bounds error, but bounds
still yields the bounds with which the array was constructed.

6.1.1 Accumulated Arrays

Another array creation function, accumArray, relaxes the restriction that a given index may
appear at most once in the association list, using an accumulating function which combines
the values of associations with the same index. The first argument of accumArray is the
accumulating function; the second is an initial value; the remaining two arguments are a
bounds pair and an association list, as for the array function. For example, given a list of
values of some index type, hist produces a histogram of the number of occurrences of each
index within a specified range:

hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
hist bnds is = accumArray (+) O bnds [(i, 1) | i<-is, inRange bnds i]

If the accumulating function is strict, then accumArray is strict in the values, as well as the
indices, in the association list. Thus, unlike ordinary arrays, accumulated arrays should not
in general be recursive.

6.2 Incremental Array Updates

The operator (//) takes an array and a list of pairs and returns an array identical to the
left argument except that it has been updated by the associations in the right argument.
(As with the array function, the indices in the association list must be unique for the
updated elements to be defined.) For example, if m is a l-origin, n by n matrix, then
m//[((i,i), 0) | i <= [1..n]] is the same matrix, except with the diagonal zeroed.

accum f takes an array and an association list and accumulates pairs from the list into the
array with the accumulating function f. Thus accumArray can be defined using accum:

accumArray f z b = accum £ (array b [(i, z) | i <- range bl)

6.3 Derived Arrays

The two functions map and ixmap derive new arrays from existing ones; they may be thought
of as providing function composition on the left and right, respectively, with the mapping
that the original array embodies. The map function transforms the array values while ixmap
allows for transformations on array indices. Figure 3 shows some examples.

6.4 Library Array 23

-- A rectangular subarray
subArray :: (Ix a) => (a,a) -> Array a b -> Array a b
subArray bnds = ixmap bnds (\i->i)

-- A row of a matrix
row :: (Ix a, Ix b) => a -> Array (a,b) ¢ -> Array b ¢
row i x = ixmap (1’,u’) (\j->(i,j)) x where ((1,1’),(u,u’)) = bounds x

-- Diagonal of a square matrix
diag :: (Ix a) => Array (a,a) b -> Array a b
diag x = ixmap (1,u) (\i->(i,i)) x
where ((1,1°),(u,u’)) | 1 ==1’ &% u == u’ = bounds x

-- Projection of first components of an array of pairs
firstArray :: (Ix a) => Array a (b,c) -> Array a b
firstArray = map (\(x,y)->x)

Figure 3: Derived array examples

6.4 Library Array

module Array (
module Ix, -- export all of Ix
Array, array, listArray, (!), bounds, indices, elems, assocs,
accumArray, (//), accum, ixmap) where

import Ix
import List((\\))

infixl 9 !, //
data (Ix a) => Array a b = MkArray (a,a) (a -> b) deriving ()

array it (Ix a) => (a,a) -> [(a,b)] -> Array a b
array b ivs =
if and [inRange b i | (i,_) <- ivs]
then MkArray b

(\j => case [v | (i,v) <- ivs, i == j] of
[v] -> v
[1 -> error "Array.!: \
\undefined array element"
_ -> error "Array.!: \

\multiply defined array element")
else error "Array.array: out-of-range array association"

listArray :: (Ix a) => (a,a) -> [b] -> Array a b
listArray b vs = array b (zipWith (\ a b -> (a,b)) (range b) vs)

24 6 ARRAYS

" :: (Ix a) => Array ab ->a ->b

(1) (MkArray _ f) = f

bounds :: (Ix a) => Array a b -> (a,a)

bounds (MkArray b _) = b

indices :: (Ix a) => Array a b -> [a]

indices = range . bounds

elems :: (Ix a) => Array a b -> [b]

elems a = [ati | 1 <- indices al

assocs :: (Ix a) => Array a b -> [(a,b)]

assocs a = [(i, a'i) | 1 <- indices a]

N :: (Ix a) => Array a b -> [(a,b)] -> Array a b

a // us = array (bounds a)
([(i,a'i) | 1 <- indices a \\ [1 | (i,_) <- us]]
++ us)

accum :: (Ix a) => (b =-> ¢ => b) -> Array a b -> [(a,c)]

-> Array a b
accum f = foldl (\a (i,v) -> a // [(i,f (a'i) v)]1)
accumArray :: (Ixa) => (b -> ¢ -> b) -> b -> (a,a) -> [(a,c)]

-> Array a b
accum f (array b [(i,z) | i <- range bl)

accumArray f z b

ixmap :: (Ix a, Ix b) => (a,a) => (a =-> b) -> Array b c
-> Array a ¢
array b [(i, a ! £ i) | i <- range b]

ixmap b f a

instance (Ix a) => Functor (Array a) where
fmap fn (MkArray b f) = MkArray b (fn . f)

instance (Ix a, Eq b) => Eq (Array a b) where
a == a’ = assocs a == assocs a’

instance (Ix a, Ord b) => Ord (Array a b) where
a <= a’ = assocs a <= assocs a’

instance (Ix a, Show a, Show b) => Show (Array a b) where
showsPrec p a = showParen (p > 9) (
showString "array "
shows (bounds a) . showChar ’ °
shows (assocs a))

6.4 Library Array

instance

(Ix a, Read a, Read b) => Read (Array a b) where

readsPrec p = readParen (p > 9)

(\r -> [(array b as, u) | ("array",s) <- lex r,
(b,t) <- reads s,
(as,u) <- reads t

D

25

26

6 ARRAYS

7 List Utilities

module List (
elemIndex, elemIndices,
find, findIndex, findIndices,
nub, nubBy, delete, deleteBy, (\\), deleteFirstsBy,
union, unionBy, intersect, intersectBy,
intersperse, transpose, partition, group, groupBy,
inits, tails, isPrefix0f, isSuffix0f,
mapAccumL, mapAccumR,
sort, sortBy, insert, insertBy, maximumBy, minimumBy,
genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex, genericReplicate,
zip4, zipb, zip6, zip7,
zipWith4, zipWithb5, zipWith6, zipWith7,
unzip4, unzipb, unzip6, unzip7, unfoldr,

-- ...and what the Prelude exports

aac:H, i,

map, (++), concat, filter,

head, last, tail, init, null, length, (!!),

foldl, foldll, scanl, scanll, foldr, foldrl, scanr, scanri,
iterate, repeat, replicate, cycle,

take, drop, splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and, or,

any, all, elem, notElem, lookup,

sum, product, maximum, minimum, concatMap,

zip, zip3, zipWith, zipWith3, unzip, unzip3

) where
infix 5 \\
elemIndex :: Eg a => a => [a] -> Maybe Int
elemIndices :: Eqg a => a -> [a] -> [Int]
find :: (a => Bool) -> [a] -> Maybe a
findIndex :: (a => Bool) -> [a] -> Maybe Int
findIndices :: (a -> Bool) -> [a] -> [Int]
nub :: Eq a => [a] -> [a]
nubBy :: (a -> a -> Bool) -> [a] -> [al]
delete :: Eq a =>a -> [a] -> [a]
deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
ANV :: Eq a => [a] —> [a] —> [a]
deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [al
union :: Eq a => [a] -> [a] -> [a]

unionBy :: (a -> a -> Bool) -> [a] -> [a]l -> [al

28 7 LIST UTILITIES

intersect :: Eq a => [a] -> [a] -> [al
intersectBy :: (a => a -> Bool) -> [a] -> [a] -> [al
intersperse ::a => [a] -> [a]
transpose :: [[al]l -> [[al]
partition :: (a => Bool) -> [a]l -> ([al,[al)
group :: Eq a => [a] -> [[all
groupBy :: (a -> a -> Bool) -> [a] -> [[all]
inits :: [a] -> [[al]
tails :: [a]l -> [[all
isPrefix0f :: Eq a => [a] -> [a] —-> Bool
isSuffix0f :: Eq a => [a] -> [a] -> Bool
mapAccumL i (@ ->b ->(a, ¢)) > a > [b]l > (a, [c])
mapAccumR :: (a->b ->(a, ¢)) > a -> [b] > (a, [c])
unfoldr :: (b => Maybe (a,b)) -> b -> [al]
sort :: Ord a => [a] -> [al
sortBy :: (a => a -> Ordering) -> [a] -> [al
insert :: 0Ord a => a > [a] -> [a]
insertBy :: (a => a -> Ordering) -> a -> [a] -> [al
maximumBy :: (a => a -> Ordering) -> [a] -> a
minimumBy :: (a => a -> Ordering) -> [a] -> a
genericLength :: Integral a => [b] -> a
genericTake :: Integral a => a -> [b] -> [b]
genericDrop :: Integral a => a -> [b] -> [b]
genericSplitAt :: Integral a => a -> [b] -> ([b],[bl)
genericIndex :: Integral a => [b] -> a -> b
genericReplicate :: Integral a => a -> b -> [b]
zip4 :: [al => [b] -> [c] -> [d]l -> [(a,b,c,d)]
ziph :: [al => [b] -> [c] -> [d]l -> [e]l -> [(a,b,c,d,e)]
zip6 :: [al => [b] -> [c] -> [dl -> [e]l -> [f]
-> [(a,b,c,d,e,f)]
zip7 :: [al => [b] => [c] -> [d] -> [e] -> [f] -> [g]
-> [(a,b,c,d,e,f,g)]
zipWith4 it (a=->b->c->d->e) -> [al->[b]->[c]l->[d]->[e]
zipWithb i (a->b->c->d->e->f) —>
(al->[b]l->[c]->[d]->[e]->[f]
zipWith6 1t (a->b->c->d->e->f->g) ->
[al->[b]l->[c]->[d]->[e]l->[£f]->[g]
zipWith7 it (a->b->c->d->e->f->g->h) ->
[al->[bl->[c]->[d]->[el->[f]->[g]->[h]
unzip4 :: [(a,b,c,d)] -> ([al,[b]l,[c],[d])
unzipb :: [(a,b,c,d,e)] -> ([al,[bl,[c],[d],[e])
unzip6 :: [(a,b,c,d,e,f)] -> ([al,[bl,[c],[d],[el,[f])

unzip7 :: [(a,b,c,d,e,f,g)] -> ([al,[b], [c],[d], [e], [f], [g])

7.1 Indexing lists 29

This library defines some lesser-used operations over lists.

7.1 Indexing lists

Function elemIndex val list returns the index of the first occurrence, if any, of val in
list as Just index. Nothing is returned if not (val ‘elem‘ list).

Function elemIndices val list returns an in-order list of indices, giving the occurrences
of val in list.

Function find returns the first element of a list that satisfies a predicate, or Nothing, if
there is no such element. findIndex returns the corresponding index. findIndices returns
a list of all such indices.

7.2 “Set” operations

There are a number of “set” operations defined over the List type. nub (meaning “essence”)
removes duplicates elements from a list. delete, (\\), union and intersect preserve the
invariant that lists don’t contain duplicates, provided that their first argument contains no
duplicates.

delete x removes the first occurrence of x from its list argument, e.g.,

delete ’a’ '"banana'" == "bnana'"

(\\) is list difference (non-associative). In the result of xs \\ ys, the first oc-
currence of each element of ys in turn (if any) has been removed from xs. Thus,
(xs ++ ys) \\ xs == ys. union is list union, e.g.,

"dog" ‘union‘ "cow" == "dogcw"

e intersect is list intersection, e.g.,

intersect [1,2,3,4] ‘intersect‘ [2,4,6,8] == [2,4]

7.3 List transformations

e intersperse sep inserts sep between the elements of its list argument, e.g.,

intersperse ’,’ "abcde" == "a,b,c,d,e"

30

7.4

7 LIST UTILITIES

transpose transposes the rows and columns of its argument, e.g.,

transpose [[1,2,3],[4,5,6]1] == [[1,4],[2,5],[3,6]]

partition takes a predicate and a list and returns a pair of lists: those elements of
the argument list that do and do not satisfy the predicate, respectively; i.e.,

partition p xs == (filter p xs, filter (not . p) xs)

sort/sortBy implement a stable sorting algorithm, here specified in terms of the
insertBy function, which inserts objects into a list according to the specified ordering
relation.

group splits its list argument into a list of lists of equal, adjacent elements. For
exmaple

group IlMiSSiSSippill == I:IIMII s Ilill s IISSII s Ilill s IISSII s llill s Ilppll , llill:l

inits returns the list of initial segments of its argument list, shortest first.

initS Ilabcll [y I:II II’IIaII’IIabII’IIabCII:]

tails returns the list of all final segments of its argument list, longest first.

tailS Ilabcll [y [Ilabcll’ Ilbcll’ IICII’II II:]

mapAccuml. £ s 1 applies £ to an accumulating “state” parameter s and to each
element of 1 in turn.

mapAccumR is similar to mapAccumL except that the list is processed from right-to-left
rather than left-to-right.

unfoldr

The unfoldr function undoes a foldr operation. Note that, in general, only invertible
functions can be unfolded.

unfoldr f’ (foldr f z xs) == xs

if the following holds:

£f2 (f xy)
£’z

Just (x,y)
Nothing

7.5 Predicates 31

7.5 Predicates

isPrefix0f and isSuffix0f check whether the first argument is a prefix (resp. suffix) of
the second argument.

7.6 The “By” operations

By convention, overloaded functions have a non-overloaded counterpart whose name is
suffixed with “By”. For example, the function nub could be defined as follows:

nub :: (Eq) => [a] -> [a]
nub [] |
nub (x:xs) x : nub (filter (\y -> x /= y) xs)

However, the equality method may not be appropriate in all situations. The function:

nubBy :: (a -> a -> Bool) -> [a] -> [a]
nubBy eq [] = [
nubBy eq (x:xs) = x : nubBy eq (filter (\y -> not (eq x y)) xs)

allows the programmer to supply their own equality test. When the “By” function replaces
an Eq context by a binary predicate, the predicate is assumed to define an equivalence; when
the “By” function replaces an Ord context by a binary predicate, the predicate is assumed
to define a total ordering.

The “By” variants are as follows: nubBy, deleteBy, unionBy, intersectBy, groupBy,
sortBy, insertBy, maximumBy, minimumBy. The library does not provide elemBy, because
any (eq x) does the same job as elemBy eq x would. A handful of overloaded func-
tions (elemIndex, elemIndices, isPrefix0f, isSuffix0f) were not considered important
enough to have “By” variants.

7.7 The “generic” operations
The prefix “generic” indicates an overloaded function that is a generalised version of a
Prelude function. For example,
genericLength :: Integral a => [b] -> a
is a generalised verion of length.

The “generic” operations are as follows: genericLength, genericTake, genericDrop,
genericSplitAt, genericIndex, genericReplicate.

32

7.8 Library List

module List (

elemIndex, elemIndices,

7 LIST UTILITIES

find, findIndex, findIndices,

nub, nubBy, delete, deleteBy, (\\),

union, unionBy, intersect, intersectBy,
intersperse, transpose, partition, group, groupBy,
inits, tails, isPrefix0f, isSuffix0f,

mapAccumL, mapAccumR,
sort, sortBy, insert, insertBy, maximumBy, minimumBy,
genericlLength, genericTake, genericDrop,
genericSplitAt, genericIndex, genericReplicate,

zip4, zipb5, zip6, zip7,

zipWith4, zipWithb, zipWith6, zipWith7,
unzip4, unzipb5, unzip6, unzip7, unfoldr,

-- ...and what the Prelude exports

e, [,

map, (++), concat, filter,

head, last, tail, init, null, length, (!'!),

foldl, foldll, scanl, scanll, foldr, foldrl, scanr, scanrl,
iterate, repeat, replicate, cycle,

take, drop, splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and, or,

any, all, elem, notElem, lookup,

sum, product, maximum, minimum, concatMap,

zip, zip3, zipWith, zipWith3, unzip, unzip3

) where

import Maybe(listToMaybe

infix 5 \\

elemIndex
elemIndex x

elemIndices
elemIndices x

find
find p

findIndex
findIndex p

findIndices
findIndices p xs

:: Eqg a => a -> [a] -> Maybe Int

findIndex (x ==

:: Eq a => a -> [a] -> [Int]

findIndices (x ==

(a => Bool) -> [a] -> Maybe a
listToMaybe . filter p

(a -> Bool) -> [a] -> Maybe Int
listToMaybe . findIndices p

(a -> Bool) -> [a] —> [Int]
[il (x,i) <= zip xs [0..], p x]

7.8 Library List 33

nub :: Eq a => [a] —> [a]

nub = nubBy (==

nubBy :: (a -> a -> Bool) -> [a]l -> [al

nubBy eq [] = [

nubBy eq (x:xs) = x : nubBy eq (filter (\y -> not (eq x y)) xs)
delete :: Eqg a =>a -> [a] -> [al

delete = deleteBy (==

deleteBy (a => a -> Bool) -> a -> [a] -> [al

L]
if x ‘eq® y then ys else y : deleteBy eq x ys

deleteBy eq x []
deleteBy eq x (y:ys)

ANV :: Eq a => [a] —> [a]l —> [al

A\\) = foldl (flip delete)

deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a]l -> [al]
deleteFirstsBy eq = foldl (flip (deleteBy eq))

union :: Eq a => [a] -> [a] -> [a]

union = unionBy (==

unionBy :: (a => a -> Bool) -> [a] -> [a] -> [a]
unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs
intersect :: Eq a => [a] -> [a] -> [a]

intersect = intersectBy (==

intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [al]
intersectBy eq xs ys = [x | x <- xs, any (eq x) ys]
intersperse i a => [a] -> [a]

intersperse sep [] = [

[x]

X : sep : intersperse sep xS

intersperse sep [x]
intersperse sep (x:xs)

-- transpose is lazy in both rows and columns,

-- and works for non-rectangular ’matrices’

-- For example, transpose [[1,2],[3,4,5]1,011 = [[1,3],[2,4]1,[5]]
-- Note that [h | (h:t) <- xss] is not the same as (map head xss)
-- because the former discards empty sublists inside xss

transpose :: [[al]l -> [[all
transpose [] =[]
transpose ([] : xSs) = transpose xSs

(x : [h | (h:t) <~ xss])
transpose (xs : [t | (h:t) <- xss])

transpose ((x:xs) : xss)

34 7 LIST UTILITIES

partition :: (a -> Bool) -> [a] —> ([al,[al)
partition p xs = foldr select ([1,[]) xs
where select x (ts,fs) | p x = (x:ts,fs)
| otherwise = (ts, x:fs)

-- group splits its list argument into a list of lists of equal, adjacent
-- elements. e.g.,

_ group IlMiSSiSSippill == ["M","i","SS","i","SS","i”,”pp",”i”]
group :: Eq a => [a] -> [[al]

group = groupBy (==

groupBy :: (a -> a -> Bool) -> [a] -> [[al]

(]
(x:ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs

groupBy eq []
groupBy eq (x:xs)

-- inits xs returns the list of initial segments of xs, shortest first.

—_— e.g. , inits llabcll == [" "’"a"’"ab"’"abcll]
inits :: [a]l -> [[a]l]
inits [] = [[I]

inits (x:xs) [[1] ++ map (x:) (inits xs)

-- tails xs returns the list of all final segments of xs, longest first.

R e.g. s tails Ilabcll == [llabcll’ llell’ IICII,IlIl]

tails :: [a] -> [[all

tails [] = [[]

tails xxs@(_:xs) = xxs : tails xs

isPrefix0f :: Eq a => [a] -> [a] -> Bool
isPrefix0f [] _ = True

isPrefix0f _ 0] = False

isPrefix0f (x:xs) (y:ys) x == y && isPrefix0f xs ys

isSuffix0f :: Eq a => [a] -> [a] -> Bool
isSuffix0f x y = reverse x ‘isPrefix0f‘ reverse y
mapAccumL :: (a->b->(a, ¢)) > a -> [b]l] > (a, [c])
mapAccuml. £ s [] = (s, [
mapAccuml. f s (x:xs) = (s?7,y:ys)

where (s’, y) = f s x

(s’?,ys) = mapAccumlL f s’ xs

mapAccumR :: (@ ->b->(a, ¢)) > a > [b] -> (a, [c])
mapAccumR f s [] = (s, [
mapAccumR f s (x:xs) = (s’’, y:ys)

fs’x
mapAccumR f s xs

where (s’’,y)
(s’, ys)

7.8 Library List

unfoldr
unfoldr f b

sort
sort =

sortBy :
sortBy cmp =

insert
insert

insertBy
insertBy cmp x [] =
insertBy cmp x ys@(y:ys’)

maximumBy
maximumBy max [] =
maximumBy max xs =

minimumBy
minimumBy min [] =
minimumBy min xs =

genericLength :
genericLength [] =
genericLength (x:xs) =

genericTake
genericTake _ [] =
genericTake 0 _ =
genericTake n (x:xs)
| n>0 =
| otherwise =

genericDrop
genericDrop 0 xs =
genericDrop _ [] =
genericDrop n (_:xs)
| n>0 =
| otherwise =

(b -> Maybe (a,b)) -> b -> [al
case f b of

Nothing -> [
Just (a,b) -> a

(0rd a) => [a] —> [al
sortBy compare

: unfoldr £ ®

(a -> a -> Ordering) -> [a] -> [al

foldr (insertBy cmp) []

(0rd a)

insertBy compare

(a > a

[x]

case cmp x y of
GT -> y : insertBy cmp x ys’

_ > X : ys

=> a -> [a] -> [a]

-> Ordering) -> a -> [a] -> [al]

(a->a->a) ->[a] > a
error "List.maximumBy: empty list"
foldll max xs

(a->a->a) > [a] > a
error "List.minimumBy: empty list"
foldll min xs

1 + genericlLength xs

: (Integral a) => [b] -> a
0

(Integral a) => a -> [b] -> [b]

(]
(]

X

genericTake (n-1) xs
error "List.genericTake: negative argument"

(Integral a) => a -> [b] -> [b]

X8

(]

genericDrop (n-1) xs
error "List.genericDrop: negative argument"

35

36 7 LIST UTILITIES

genericSplitAt :: (Integral a) => a -> [b]l -> ([bl,[b])
genericSplitAt O xs = ([1,xs)
genericSplitAt _ [] = (01,0
genericSplitAt n (x:xs)
| n >0 = (x:x8’,xs8’?)
| otherwise = error "List.genericSplitAt: negative argument"

where (xs’,xs’’) genericSplitAt (n-1) xs

genericIndex :: (Integral a) => [b] -> a -> b
genericIndex (x:_) O
genericIndex (_:xs) n

X

| n>0 = genericIndex xs (n-1)

| otherwise = error "List.genericIndex: negative argument"
genericIndex _ _ = error "List.genericIndex: index too large"
genericReplicate :: (Integral a) => a -> b -> [b]

genericReplicate n x genericTake n (repeat x)

zip4 :: [al -> [b] -> [c] -> [d] -> [(a,b,c,d)]

zip4 = zipWith4 (,,,)

le5 e [a] -> [b] -> [C] -> [d] -> [e] -> [(a,b,C,d,e)]

ziph = zipWithb (,,,,)

zip6 :: [a] -> [b] => [c] -> [d] -> [e]l -> [f] ->
[(a,b,c,d,e,f)]

zip6 = zipWith6 (,,,,,)

zip7 :: [a] => [b] => [c] -> [d] -> [e]l] -> [f] —>
(gl -> [(a,b,c,d,e,f,g)]

zip7 = zipWith7 (,,,,,,)

zipWith4 (a=>b->c->d->e) -> [a]l->[b]l->[c]->[d]->[e]

zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
= zabcd: zipWith4 z as bs cs ds
zipWith4 = [

zipWithb i1 (a->b->c->d->e->f) —>
[al->[b]l->[c1->[d]->[e]l->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
= zabcde : zipWithd z as bs ¢s ds es
zipWith5 = [I

zipWith6 it (a->b->c->d->e->f->g) —>
[al->[b]->[c]->[d]->[e]l->[f]1->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= zabcdef : zipWith6 z as bs cs ds es fs
zipWith6 _ _ _ _ _ _ _ = [I

7.8 Library List 37

zipWith7 :: (a->b->c—>d->e->f->g->h) ->
lal->[b]->[c]->[d]->[e]l->[£]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= zabcdef g : zipWith7 z as bs ¢s ds es fs gs

ZipWith7 _ _ _ _ _ _ _ _ = [1
unzip4 :: [(a,b,c,d)] -> ([al,[b], [c],[d])
unzip4 = foldr (\(a,b,c,d) “(as,bs,cs,ds) ->

(a:as,b:bs,c:cs,d:ds))
o, 0,0,

unzipb :: [(a,b,c,d,e)] -> ([al,[b],[c],[d],[e])
unzipb = foldr (\(a,b,c,d,e) ~(as,bs,cs,ds,es) ->
(a:as,b:bs,c:cs,d:ds,e:es))

(01,0,0,0,0

unzip6 :: [(a,b,c,d,e,f)] -> ([al,[b]l, [c],[d],[el, [£f])
unzip6 = foldr (\(a,b,c,d,e,f) ~“(as,bs,cs,ds,es,fs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs))

(,0.,0.,0a,a.t

unzip7 :: [(a,b,c,d,e,f,g)] -> ([al,[bl,[c],[d],[e],[f],[gl)
unzip7 = foldr (\(a,b,c,d,e,f,g) “(as,bs,cs,ds,es,fs,gs) —->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))

a,0.,0.,0,0,0,0)

38

8 Maybe Utilities

8 MAYBE UTILITIES

module Maybe (

Maybe (Nothing,
maybe
) where

isJust, isNothing
fromJust
fromMaybe
listToMaybe
maybeToList
catMaybes
mapMaybe

isJust, isNothing,
fromJust, fromMaybe, listToMaybe, maybeTolList,
catMaybes, mapMaybe,

-- ...and what the Prelude exports

Just),

:: Maybe a -> Bool
:: Maybe a > a
:: a -> Maybe a -> a
:: [al -> Maybe a
:: Maybe a -> [a]
[Maybe a] -> [al]
(a => Maybe b) -> [a] -> [b]

The type constructor Maybe is defined in Prelude as

data Maybe a = Nothing | Just a

The purpose of the Maybe type is to provide a method of dealing with illegal or optional
values without terminating the program, as would happen if error were used, and without
using I0OError from the I0 monad, which would cause the expression to become monadic.
A correct result is encapsulated by wrapping it in Just; an incorrect result is returned as

Nothing.

Other operations on Maybe are provided as part of the monadic classes in the Prelude.

8.1 Library Maybe 39

8.1 Library Maybe

module Maybe (
isJust, isNothing,
fromJust, fromMaybe, listToMaybe, maybeTolList,
catMaybes, mapMaybe,

-- ...and what the Prelude exports
Maybe (Nothing, Just),

maybe
) where

isJust
isJust (Just a)
isJust Nothing

isNothing
isNothing

fromJust
fromJust (Just a)
fromJust Nothing

fromMaybe
fromMaybe d Nothing
fromMaybe d (Just a)

maybeToList
maybeToList Nothing
maybeToList (Just a)

listToMaybe
listToMaybe []
listToMaybe (a:_)

catMaybes
catMaybes ms

mapMaybe
mapMaybe f

:: Maybe a —> Bool

True
False

:: Maybe a —> Bool

not . isJust

:: Maybe a > a

a
error "Maybe.fromJust: Nothing"

:: a -> Maybe a -> a

d
a

:: Maybe a -> [al

(]
[al

[a]l -> Maybe a
Nothing
Just a

[Maybe a] -> [a]
[m | Just m <- ms]

(a => Maybe b) -> [a] -> [b]
catMaybes . map £

40 9 CHARACTER UTILITIES

9 Character Utilities

module Char (
isAscii, isLatinl, isControl, isPrint, isSpace, isUpper, isLower,
isAlpha, isDigit, isOctDigit, isHexDigit, isAlphalum,
digitToInt, intToDigit,
toUpper, tolLower,
ord, chr,
readLitChar, showLitChar, lexLitChar

-- ...and what the Prelude exports
Char, String
) where

isAscii, isLatinl, isControl, isPrint, isSpace, isUpper, isLower,
isAlpha, isDigit, isOctDigit, isHexDigit, isAlphaNum :: Char -> Bool

toUpper, toLower :: Char -> Char

digitToInt :: Char -> Int
intToDigit :: Int -> Char

ord :: Char -> Int
chr :: Int -> Char
lexLitChar :: ReadS String

readLitChar :: ReadS Char
showLitChar :: Char -> ShowS

This library provides a limited set of operations on the Unicode character set. The first 128
entries of this character set are identical to the ASCII set; with the next 128 entries comes
the remainder of the Latin-1 character set. This module offers only a limited view of the
full Unicode character set; the full set of Unicode character attributes is not accessible in
this library.

Unicode characters may be divided into five general categories: non-printing, lower case
alphabetic, other alphabetic, numeric digits, and other printable characters. For the pur-
poses of Haskell, any alphabetic character which is not lower case is treated as upper case
(Unicode actually has three cases: upper, lower, and title). Numeric digits may be part
of identifiers but digits outside the ASCII range are not used by the reader to represent
numbers.

For each sort of Unicode character, here are the predicates which return True:

41

Character Type Predicates

Lower Case Alphabetic | isPrint isAlphaNum isAlpha isLower
Oth