Green card: a foreign-language interface for Haskell

Simon Peyton Jones
Glasgow University and Oregon Graduate Institute

Thomas Nordin
Royal Institute of Technology, Stockholm, and Oregon Graduate Institute

Alastair Reid
Yale University

February 14, 1997

1 Motivation

A foreign-language interface provides a way for soft-
ware components written in a one language to interact
with components written in another. Programming
languages that lack foreign-language interfaces die a
lingering death.

This document describes Green Card, a foreign-
language interface for the non-strict, purely func-
tional language Haskell. We assume some knowledge

of Haskell and C.

1.1 Goals and non-goals

Our goals are limited. We do not set out to solve the
foreign-language interface in general; rather we intend
to profit from others’ work in this area. Specifically,
we aim to provide the following, in priority order:

1. A convenient way to call C procedures from

Haskell.

2. A convenient way to write COM! software com-
ponents in Haskell, and to call COM compo-
nents from Haskell.

The ability to call C from Haskell is an essential foun-
dation. Through it we can access operating system
services and mountains of other software libraries.

In the other direction, should we be able to write a
Haskell library that a C program can use? In principle
this makes sense but in practice there is zero demand
for it. The exception is that the ability to support
some sort of call-backs is essential, but that is a very
limited form of C calling Haskell.

"Microsoft’s Common Object Model (COM) is a language-
independent software component architecture. It allows ob-
jects written in one language to create objects written in an-
other, and to call their methods. The two objects may be
in the same address space, in different address spaces on the
same machine, or on separate machines connected by a net-
work. OLE is a set of conventions for building components on
top of COM.

Should we support languages other than C? The trite
answer is that pretty much everything available as a
library is available as a C library. For other languages
the right thing to do is to interface to a language-
independent software component architecture, rather
than to a raft of specific languages. For the moment
we choose COM, but CORBA? might be another sen-

sible choice.

While we do not propose to call Haskell from C, it
does make sense to think of writing COM software
components in Haskell that are used by clients. For
example, one might write an animated component
that sits in a Web page.

This document, however, describes only (1), the C
interface mechanism.

2 Foreign language interfaces are
harder than they look

Even after the scope is restricted to designing a
foreign-language interface from Haskell to C, the task
remains surprisingly tricky. At first, one might think
that one could take the C header file describing a
C procedure, and generate suitable interface code to
make the procedure callable from Haskell.

Alas, there are numerous tiresome details that are
simply not expressed by the C procedure prototype
in the header file. For example, consider calling a C
procedure that opens a file, passing a character string
as argument. The C prototype might look like this:

int open(char *filename)

Our goal is to generate code that implements a
Haskell procedure with type

open :: String -> I0 FileDescriptor

e First there is the question of data representa-
tion. Ome has to decide either to alter the
Haskell language implementation, so that is

2CORBA is a vendor-independent competitor of COM.

string representation is identical to that of C,
or to translate the string from one representa-
tion to another at run time. This translation is
conventionally called marshalling.

Since Haskell is lazy, the second approach is
required. (In general, it is tremendously con-
straining to try to keep common representations
between two languages. For example, precisely
how does C lay out its structures?)

Next come questions of allocation and lifetime.
Where should we put the translated string? In
a static piece of storage? (But how large a block
should we allocate? Is it safe to re-use the same
block on the next call?) Or in Haskell’s heap?
(But what if the called procedure does some-
thing that triggers garbage collection, and the
transformed string is moved? Can the called
procedure hold on to the string after it returns?)
Or in C’s malloc’d heap? (But how will it get
deallocated? And malloc is expensive.)

C procedures often accept pointer parameters
(such as strings) that can be NULL. How is that
to be reflected on the host-language side of the
interface? For example, if the documentation
for open told us that it would do something sen-
sible when called with a NULL string, we might
like the Haskell type for open to be

open :: Maybe String -> IO FileDescriptor

so that we can model NULL by Nothing.

The desired return type, FileDescriptor, will
presumably have a Haskell definition such as
this:

newtype FileDescriptor = FD Int

The file descriptor returned by open is just
an integer, but Haskell programmers often use
newtype declarations create new distinct types
isomorphic to existing ones. Now the type sys-
tem will prevent, say, an attempt to add one to
a FileDescriptor.

Needless to say, the Haskell result type is not
going to be described in the C header file.

The file-open procedure might fail; sometimes
details of the failure are stored in some global
variable, errno. Somehow this failure and the
details of what went wrong must be reflected
into Haskell’s I0 monad.

The open procedure causes a side effect, so it
is appropriate for its type to be in Haskell’s
I0 monad. Some C functions really are func-
tions (that is, they have no side effects), and in
this case it makes sense to give them a “pure”
Haskell type. For example, the C function sin
should appear to the Haskell programmer as a
function with type

gin :: Float -> Float

o C procedure specifications are not explicit about
which parameters are in parameters, which out
and which in out.

None of these details are mentioned in the C header
file. Instead, many of them are in the manual page
for the procedure, while others (such as parameter
lifetimes) may not even be written down at all.

3 Overview of Green Card

The previous section bodes ill for an automatic system
that attempts to take C header files and automatically
generate the “right” Haskell functions; C header files
simply do not contain enough information.

The rest of this paper describes how we approach the
problem. The general idea is to start from the Haskell
type definition for the foreign function, rather than
the C prototype. The Haskell type contains quite a
bit more information; indeed, it is often enough to
generate correct interface code. Sometimes, however,
it is not, in which case we provide a way for the pro-
grammer to express more details of the interface. All
of this is embodied in a program called “Green Card”.

Green Card is a Haskell pre-processor. It takes a
Haskell module as input, and scans it for Green-Card
directives (which are lines prefixed by “%”). It pro-
duces a new Haskell module as output, and sometimes
a C module as well (Figure 1).

Green Card’s output depends on the particular
Haskell implementation that is going to compile it.
For the Glasgow Haskell Compiler (GHC), Green
Card generates Haskell code that uses GHC’s primi-
tive ccall/casm construct to call C. All of the argu-
ment marshalling is done in Haskell. For Hugs, Green
Card generates a C module to do most of the argu-
ment marshalling, while the generated Haskell code
uses Hugs’s prim construct to access the generated C
stubs.

For example, consider the following Haskell module:

module M where

%fun sin :: Float -> Float
gin2 :: Float -> Float
sin2 x = sin (sin x)

Everything is standard Haskell except the %fun line,
which asks Green Card to generate an interface to
a (pure) C function sin. After the GHC-targeted
version of Green Card processes the file, it looks like
this?:

30nly GHC aficionados will understand this code. The

whole point of Green Card is that Joe Programmer should
not have to learn how to write this stuff.

Haskell module

Green Card

Haskell module

rd
s — — — -

T Cfile

Figure 1: The big picture

module M where

gin :: Float -> Float
sin f = unsafePerformPrimI0 (
case f of { F# f# ->
casm ‘‘Y%r = sin(%0)’’ f#
‘thenPrimI0‘ \ r# ->
returnPrimI0 (F# r#)})

gin2 :: Float -> Float
sin2 x = sin (sin x)

The %fun line has been expanded to a blob of grue-
some boilerplate, while the rest of the module comes
through unchanged.

If Hugs were the target, the Haskell source file re-
mains unchanged, but a the Hugs variant of Green
Card would generate output that uses Hugs’s prim-
itive mechanisms for calling C. Much of the Green-
Card implementation is, however, shared between
both variants. (We hope. The Hugs variant isn’t even
written.)

4 Green Card directives

Green Card pays attention only to Green-Card direc-
tives, each of which starts with a “%” at the beginning
of a line. All other lines are passed through to the
output Haskell file unchanged.

The syntax of Green Card directives is given in Fig-
ure 2). The syntax for dis is given later (Figure 3).
The form Any, means any symbol except z.

Green Card understands the following directives:

e Jfun begins a procedure specification, which de-
scribes the interface to a single C procedure
(Section 5).

e /dis allows the programmer to describe a new
Data Interface Scheme (DIS). A DIS describes
how to translate, or marshall, data from Haskell
to C and back again (Section 6).

e Jiconst makes it easy to generate a collection of
new Haskell constants derived from C constants.

This can be done with %fun, but %const is much
more concise (Section 5.6).

e Jprefix makes it easy to remove standard pre-
fixes from the Haskell function name, those are
usually not needed since Haskell allows qualified
imports (Section 5.7).

e Procedure specifications can, as we shall see,
contain fragments of C. j#include tells Green
Card to arrange that a specified C header file
will be included with the C code in the proce-
dure specifications when the latter is fed to a C
compiler (Section 8).

A directive can span more than one line, but the con-
tinuation lines must each start with a % followed by
some whitespace. For example:

%fun draw :: Int -- Length in pixels
% -> Maybe Int -- Width in pixels
% -> 10 O

Haskell-style comments are permitted in Green-Card
directives.

A general principle we have followed is to define a sin-
gle, explicit (and hence long-winded) general mech-
anism, that should deal with just about anything,
and then define convenient abbreviations that save
the programmer from writing out the general mecha-
nism in many common cases. We have erred on the
conservative side in defining such abbreviations; that
is, we have only defined an abbreviation where do-
ing without it seemed unreasonably long-winded, and
where there seemed to be a systematic way of defining
an abbreviation.

5 Procedure specifications

The most common Green-Card directive is a proce-
dure specification. It describes the interface to a C
procedure. A procedure specification has four parts:

Type signature: %fun (Section 5.1). The %fun
statement starts a new procedure specification,

Program idl — decly,...decln
Declaration decl — proc
| Y%const Var [Var;...Vary]
| %dis Var Var;...Var, = dis n>0
| %#include filename
| ‘%prefix Var
Procedure proc — sig [call] [ccode] [result]
Signature stg — %fun Var :: Type
Type type — Var
| Var type
| type => type
| (typer, ...typen)
Call call — Y%call disy...disp
Result result — Y%fail cexp cexp [result]
| %result dis
C Ezpression cexp — o Any} }
ccode
|
C Code ccode — ‘%hcode Var
Filename filename — <Var>
| "Vare

Constants n > 1

Scope over cexp
Prefiz to strip from Haskell function names

Name and type

Tuplen >0

In 10 Monad

Passed to C'
Passed to C'

Figure 2: Grammar for Green Card

giving the name and Haskell type of the func-
tion.

Parameter marshalling: %call
(Section 5.2). The Y%call statement tells Green
Card how to translate the Haskell parameters
into their C representations.

The body: %code (Section 5.3). The Y%code state-
ment gives the body and it can contain arbi-
trary C code. Sometimes the body consists of
a simple procedure call, but it may also include
variable declarations, multiple calls, loops, and
S0 on.

Result marshalling: %result, %fail
(Section 5.4). The result-marshalling state-
ments tell Green Card how to translate the re-
sult(s) of the call back into Haskell values.

Any of these parts may be omitted except the type
signature. If any part is missing, Green Card will fill
in a suitable statement based on the type signature
given in the %fun statement. For example, consider

this procedure specification:
%fun sin :: Float -> Float

Green Card fills in the missing statements like this*:

“The details of the filled-in statements will make more
sense after reading the rest of Section 5

%fun sin :: Float -> Float
%call (float x1)

Y%icode result = sin(x1);
Y%result (float result)

The rules that guide this automatic fill-in are de-
scribed in Section 5.5.

A procedure specification can define a procedure with
no input parameter, or even a constant (a “proce-
dure” with no input parameters and no side effects).
In the following example, printBangis an example of
the former, while grey is an example of the latter®:

%fun printBang :: I0 ()
%code printf("I)

%fun grey :: Colour
%code r = GREY;
Y%result (colour r)

All the C variables bound in the %call statement or
mentioned in the %result statement, are declared by
Green Card and in scope throughout the body. In the
examples above, Green Card would have declared x1,
result and r.

5When there are no parameters, the %call line can be omit-
ted. The second example can also be shortened by writing a
C expression in the ¥result statement; see Section 5.4.

5.1 Type signature

The %fun statement starts a new procedure specifica-
tion.

Green Card supports two sorts of C procedures: ones
that may cause side effects (including I/0), and ones
that are guaranteed to be pure functions. The two are
distinguished by their type signatures. Side-effecting
functions have the result type I0 t for some type t.
If the programmer specifies any result type other than
10 t, Green Card takes this as a promise that the C
function is indeed pure, and will generate code that
calls unsafePerfornI0.

The procedure specification will expand to the defini-
tion of a Haskell function, whose name is that given
in the %fun statment, with two changes: the longest
matching prefix specified with a %prefix (Section 5.7
elaborates)statement is removed from the name and
the first letter of the remaining function name is
changed to lower case. Haskell requires all function
names to start with a lower-case letter (upper case
would indicate a data constructor), but when the C
procedure name begins with an upper case letter it
is convenient to still be able to make use of Green
Card’s automatic fill-in facilities. For example:

%fun OpenWindow :: Int -> I0 Window

would expand to a Haskell function openWindow
that is implemented by calling the C procedure
OpenWindow.

%prefix Win32

%fun Win320penWindow :: Int -> I0 Window

would expand to a Haskell function openWindow
that is implemented by calling the C procedure
Win320penkWindow.

5.2 Parameter marshalling

The %call statement tells Green Card how to trans-
late the Haskell parameters into C values. Its syntax
is designed to look rather like Haskell pattern match-
ing, and consists of a sequence of zero or more Data
Interface Schemes (DISs), one for each (curried) ar-
gument in the type signature. For example:

%fun foo :: Float -> (Int,Int) -> String ->
%call (float x) (int y, int z) (string s)

This %call statement binds the C variables x, vy,
z, and s, in a similar way that Haskell’s pattern-
matching binds variables to (parts of) a function’s
arguments. These bindings are in scope throughout
the body and result-marshalling statements.

In the %call statement, “float”, “int”, and
“string” are the names of the DISs that are used
to translate between Haskell and C. The names of
these DISs are deliberately chosen to be the same as
the corresponding Haskell types (apart from chang-

I0 O %fun sin ::

ing the initial letter to lower case) so that in many
cases, including foo above, Green Card can generate
the %callline by itself (Section 5.5). In fact there is a
fourth DIS hiding in this example, the (_,_) pairing
DIS. DISs are discussed in detail in Section 6.

5.3 The body

The body consists of arbitrary C code, beginning with
%code. The reason for allowing arbitrary C is that
C procedures sometimes have complicated interfaces.
They may return results through parameters passed
by address, deposit error codes in global variables, re-
quire #include’d constants to be passed as parame-
ters, and so on. The body of a Green Card procedure
specification allows the programmer to say exactly
how to call the procedure, in its native language.

The C code starts a block, and may thus start with
declarations that create local variables. For example:

%code int x, y;
% x = foo(&y, GREY);

Here, x and y are declared as local variables. The local
C variables declared at the start of the block scope
over the rest of the body and the result-marshalling
statements.

The C code may also mention constants from C
header files, such as GREY above. Green Card’s
%#include directive tells it which header files to in-
clude (Section 8).

5.4 Result marshalling

Functions return their results using a %result state-
ment. Side-effecting functions — ones whose result
type is I0 t — can also use %fail to specify the fail-
ure value.

5.4.1 Pure functions

The %result statement takes a single DIS that de-
scribes how to translate one or more C values back
into a single Haskell value. For example:

Float -> Float
%call (float x)

Y%icode ans = sin(x);
Y%result (float ans)

As in the case of the %call statement, the “float” in
the %result statement is the name of a DIS, chosen as
before to coincide with the name of the type. A single
DIS, “float”, is used to denote both the translation
from Haskell to C and that from C to Haskell, just
as a data constructor can be used both to construct
a value and to take one apart (in pattern matching).

All the C variables bound in the %call statement,
and all those bound in declarations at the start of the

body, scope over all the result-marshalling statements
(i.e. Y%result and %fail).

5.4.2 Avrbitrary C results

In a result-marshalling statement an almost arbitrary
C expression, enclosed in braces, can be used in place
of a C variable name. The above example could be
written more briefly like this®:

%fun sin :: Float -> Float
%call (float x)
Y%result (float {sin(x)})

The C expression can neither have assignments nor
nested braces as that could give rise to syntactic am-
biguity (Section 2 elaborates).

5.4.3 Side effecting functions

A side effecting function returns a result of type I0 t
for some type t. The I0 monad supports exceptions,
so Green Card allows them to be raised.

The result-marshalling statements for a side-effecting
call consists of zero or more %fail statements, each
of which conditionally raise an exception in the 10
monad, followed by a single %result statement that
returns successfully in the I0 monad.

Just as in Section 5.4, the jresult statement gives
a single DIS that describes how to construct the re-
sult Haskell value, following successful completion of
a side-effecting operation. For example:

%fun windowSize :: Window -> I0 (Int,Int)
%call (window w)

Y%icode struct WindowInfo wi;

% GetWindowInfo(w, &wi);

%result (int {wi.x}, int {wi.y})

Here, a pairing DIS is used, with two int DISs inside
it. The arguments to the int DISs are C record se-
lections, enclosed in braces; they extract the relevant
information from the WindowInfo structure that was
filled in by the GetWindowInfo call’.

The %fail statement has two fields, each of which
is either a C variable, or a C expression enclosed in
braces. The first field is a boolean-valued expression
that indicates when the call should fail; the second
is a (char *)-valued that indicates what sort of fail-
ure occurred. If the boolean is true (i.e. non zero)
then the call fails with a UserError in the I0 monad
containing the specified string.

For example:

%fun fopen :: String -> IO FileHandle
%call (string s)

5Tt can be written more briefly still by using automatic
fill-in (Section 5.5).

"This example also shows one way to interface to C proce-
dures that manipulate structures.

%code £ = fopen(s);
%fail {f == NULL} {errstring(errno)}
Y%result (fileHandle f)

The assumption here is that fopen puts its error code
in the global variable errno, and errstring converts
that error number to a string.

UserErrors can be caught with catch, but exactly
which error occurred must be encoded in the string,
and parsed by the error-handling code. This is rather
slow, but errors are meant to be exceptional.

5.5 Automatic fill-in

Any or all of the parameter-marshalling, body, and
result-marshalling statements may be omitted. If
they are omitted, Green Card will “fill in” plausi-
ble statements instead, guided by the function’s type
signature. The rules by which Green Card does this
filling in are as follows:

e A missing %call statement is filled in with a
DIS for each curried argument. Each DIS is
constructed from the corresponding argument
type as follows:

— A tuple argument type generates a tuple
DIS, with the same algorithm applied to
the components.

— All other types generate a DIS function ap-
plication (Section 6.1). The DIS function
name is derived from the type of the cor-
responding argument, except that the first
letter of the type is changed to lower case.
The DIS function is applied to as many ar-
gument variables as required by the arity
of the DIS function.

— The automatically-generated argument

variables are named left-to-right as argl,
arg?2, arg3, and so on.

e [f the body is missing, Green Card fills in a body
of the form:

%coder = flar,...,an);
where

— f is the function name given in the type
signature.

— aj ...ay are the argument names extracted
from the %call statement.

— r is the variable name for the variable used
in the Yresult statement. (There should
only be one such variable if the body is
automatically filled in.)

e A missing Yresult statement is filled in by a
%result with a DIS constructed from the result
type in the same way as for a %call. The result
variables are named res, res?2, res3, and so on.

o Green Card never fills in %fail statements.

5.6 Constants

Some C header files define a large number of constants
of a particular type. The %const statement provides
a convenient abbreviation to allow these constants to
be imported into Haskell. For example:

Y%const PosixError [EACCES, ENOENT]

This statement is equivalent to the following %fun
statements:

%fun EACCES ::
%fun ENOENT ::

PosixError
PosixError

After the automatic fill-in has taken place we would
obtain:

%fun EACCES :: PosixError
%result (posixError { EACCES })

%fun ENOENT :: PosixError
%result (posixError { ENOENT })

Each constant is made available as a Haskell value
of the specified type, converted into Haskell by the
DIS function for that type. (It is up to the program-
mer to write a %dis definition for the function — see
Section 6.2.)

5.7 DPrefixes

In C it is common practise to give all function names
in a library the same prefix, to minimize the impact
on the common namespace. In Haskell we use quali-
fied imports to achieve the same result. To simplify
the conversion of C style namespace management to
Haskell the %prefix statement specifies which pre-
fixes to remove from the Haskell function names.

module OpenGL where

%prefix OpenGL
%prefix gl

%fun OpenGLInit :: Int -> I0 Window
%fun glSphere :: Coord -> Int -> IO Object

This would define the two procedures Init and Sphere
which would be implemented by calling OpenGLInit
and glSphere respectively.

6 Data Interface Schemes

A Data Interface Scheme, or DIS, tells Green Card
how to translate from a Haskell data type to a C data
type, and vice versa.

6.1 Forms of DISs

The syntax of DISs is given in Figure 3. It is designed
to be similar to the syntax of Haskell patterns. A DIS

takes one of the following forms:

1. The application of a DIS function to zero or
more arguments. Like Haskell functions, a DIS
function starts with a lower-case letter. DIS
function are described in Section 6.2. Standard
DIS functions include int, float, double; the
full set is given in Section 7. For example:

%fun foo :: This -> Int -> That
%call (this x y) (int z)

%code r = c_foo(x, y, z)}
Y%result (that r)

In this example this and that are DIS functions
defined elsewhere.

2. The application of a Haskell data constructor to
zero or more DISs. For example:

newtype Age = Age Int

%fun foo :: (Age,Age) -> Age
%call (Age (int x), Age (int y))
%code r = foo(x,y);

%result (Age (int r))

As the %call line of this example illustrates,
tuples are understood as data constructors, in-
cluding their special syntax. Haskell record syn-
tax is also supported. For example:

data Point = Point { px,py::Int }

%fun foo :: Point -> Point
%call (Point { px = int x, py = int y })

The use of records is also the reason for the re-
striction that simple C expressions can’t contain
assignment. Without this restriction examples
like this would be ambiguous:

%result Foo { a = bar x, b = bar y }

Green Card does not attempt to perform type
inference; it simply assumes that any DIS start-
ing with an upper case letter is a data con-
structor, and that the number of argument DISs
matches the arity of the constructor.

3. A C type cast, enclosed in braces, followed by a
C variable name. It only makes sense in a ver-
sion of Haskell extended with unboxed types,
because only they need no translation. Exam-
ples:

%fun foo :: Int# -> I0 ()
%call ({int} x)

data T = MkT Int#
%fun baz :: T -> 10 ()
%call (MkT ({int} x))

DIS dis

Cons argy ...argn

—1

adis
ADIS adis (dis)
tc cexp
tc var
var

(disy, ...disp)

—

adis
cexp
var

Arg arg

—

DisFun disfun

var

TypeCast te cexp

L Ll

Var

Variable var

disfun argy...argn

Cons{ field; = disy, ... fieldy, = disp} Recordn >1

Application
Constructor n > 0

result only

Bound by %dis
Tuplen >0

C Expression

Initial letter lower case

Figure 3: DIS grammar

6.2 DIS functions

It would be unbearably tedious to have to write out
complete DISs in every procedure specification, so
Green Card supports DIS functionsin much the same
way that Haskell provides functions. (The big differ-
ence is that DIS functions can be used in “patterns”
— such as %call statements — whereas Haskell func-
tions cannot.)

Green Card supports two sorts of DIS function: DIS
macros (Section 6.2.1) and user-defined DISs (Sec-
tion 6.2.2).

6.2.1 DIS macros

DIS macros allow the programmer to define abbrevi-
ations for commonly-occurring DISs. For example:

newtype This = MkThis Int (Float, Float)
%dis this x y z = MkThis (int x)
(float y, float z)
Along with the newtype declaration the programmer

can write a %dis function definition that defines the
DIS function this in the obvious manner.

DIS macros are simply expanded out by Green Card
before it generates code. So for example, if we write:

%fun £ :: This -> This
%call (this p q r)

Green Card will expand the call to this:

%fun £ :: This -> This
%call (MkThis (int p) (float q, float r))

(In fact, int and float are also DIS macros defined
in Green Card’s standard prelude, so the %call line
is further expanded to:

%fun £ :: This -> This
%call (MkThis (I# ({int} p))
(F#t ({float} q), F# ({float} r)))

The fully expanded calls describe the marshalling
code in full detail; you can see why it would be incon-
venient to write them out literally on each occasion!)

Notice that DIS macros are automatically bidirec-
tional; that is, they can be used to convert Haskell
values to C and vice versa. For example, we can write:

%fun £ :: This -> This

%call (MkThis (int p) (float q, float r))
Y%icode int a, b, c;

% f(p, q, r, &a, &b, &c);

Y%result (this a b c)

The form of DIS macro definitions, given in Figure 3,
is very simple. The formal parameters can only be
variables (not patterns), and the right hand side is
simply another DIS. Only first-order DIS macros are
permitted.

6.2.2 User-defined DISs

Sometimes Green Card’s primitive DISs (data con-
structors) are insufficiently expressive. For recursive
types, such as lists, it is obviously no good to write a
single data constructor.

Green Card therefore provides a “trap door” to allow
a sufficiently brave programmer to write his or her
own marshalling functions. For example:

data T = Zero | Succ T

%fun square :: T -> T
%call (t (int x))
%code r = square(x);
%result (t (int r))

Use of t requires that the programmer define two
ordinary Haskell functions, marshall_t to convert
from Haskell to C, and unmarshall_t to convert in
the other direction. In this example, these functions
would have the types:

:: T => Int
Int -> T

marshall_t
unmarshall_t ::

The functions must have precisely these names:
“marshall_” followed by the name of the DIS, and
similarly for unmarshall. Notice that these mar-
shalling functions have pure types (e.g. marshall_t
has type T -> Int rather than T -> I0 Int). Some-
times one wants to write a marsalling function
that is internally stateful. For example, it might
pack a [Char] into a ByteArray, by allocating a
MutableByteArray and filling it in with the characters
one at a time. This can be done using runST, or even
unsafePerformI0. (These are all GHC-specific com-
ments; so far as Green Card is concerned it is simply
up to the programmer to supply suitably-typed mar-
shalling functions.)

Green Card distinguishes user-defined DISs from DIS
macros by omission: if there is a DIS macro defi-
nition for a DIS function f then Green Card treats
f as a macro, otherwise it assumes f is a user-
defined DIS and generates calls to marshall_t and/or
unmarshall_t.

6.3 Semantics of DISs

How does Green Card use these DISs to convert be-
tween Haskell values and C values? We give an in-
formal algorithm here, although most programmers
should be able to manage without knowing the de-
tails.

To convert from Haskell values to C values, guided by

a DIS, Green Card does the following:

o First, Green Card rewrites all DIS function ap-
plications, replacing left hand side by right hand
side.

o Next, Green Card works from outside in, as fol-
lows:

— For a data constructor DIS (in either po-
sitional or record form), Green Card gen-
erates a Haskell case statement to take the
value apart.

— For a user-defined DIS, Green Card calls
the DIS’s marshall function.

— For a type-cast-with-variable DIS, Green
Card does no translation.

Much the same happens in the other direction, except
that Green Card calls the unmarshall function in the

user-defined DIS case.

7 Standard DISs

Figure 4 gives the DIS functions that Green Card pro-
vides as a “standard prelude”.

The “T” variants allow the programmer to specify
what type is to be used as the C representation type.
For example, the int DIS maps a Haskell Int to a C
int, whereas intT {FD} maps a Haskell Int onto a C
value with type FD.

7.1 GHC extensions

Several of the standard DISs involve types that go
beyond standard Haskell:

e Addr is a GHC type large enough to contain a
machine address. The Haskell garbage collector
treats it as a non-pointer, however.

e ForeignObjis a GHC type designed to contain
a reference to a foreign resource of some kind:
a malloc’d structure, a file descriptor, an X-
windows graphic context, or some such. The
size of this reference is assumed to be that of a
machine address. When the Haskell garbage col-
lector decides that a value of type ForeignObj
is unreachable, it calls the object’s finalisation
routine, which was given as an address in the
argument of the DIS. The finalisation routine is
passed the object reference as its only argument.

e The stable DIS maps a value of any type onto
a C int. The int is actually an index into the
stable pointer table, which is treated as a source
of roots by the garbage collector. Thus the C
procedure can effectively get a reference into the
Haskell heap. When stableis used to map from
C to Haskell, the process is reversed.

7.2 Maybe

Almost all DISs work on single-constructor data
types. It is much less obvious how to translate values
of multi-constructor data types to and from C. Nev-
ertheless, Green Card does deal in an ad hoc fashion
with the Maybe type, because it seems so important.

The syntax for the maybeT DIS is:
maybeT cexp dis

DIS Haskell C type Comments

int x Int int x

intT t x Int t x

char c¢ Char char c¢

charT t ¢ Char t c

float f Float float f

floatT t £ Float t £

double d Double double d

doubleT t d Double t d

bool b Bool int b 0 for False, 1 for True

boolT t b Bool tb

addr a Addr void *a An immovable C-land address

addrT t a Addr t a

string s String char *s Persistence not required in either direction.

foreign x f ForeignObj | void *x, f is the free routine; it takes one parameter,

void *f () namely x, the thing to be freed.
foreignT t x f ForeignObj | t x,
void *f ()

stable x any int Makes it possible to pass a Haskell pointer
to C, and perhaps get it back later, without
breaking the garbage collector.

stableT t x any t

maybe dis Maybe dis | type of dis Converts to and from Maybe’s, with 0 as
Nothing

maybeT cexp dis | Maybe dis | type of dis Converts to and from Maybe’s

Figure 4: Standard DISs

where dis is any DIS, and cexp is a C expression
which represents the Nothing value in the C world.

In the following example, the function foo takes an
argument of type Maybe Int. If the argument value is
Nothing it will bind x to 0; if it is Just a it will bind
x to the value of a. The return value will be Just r
unless r -1 in which case it will be Nothing.

%fun foo :: Maybe Int -> Maybe Int

%call (maybeT { 0 } (int x))

Y%icode r = foo(x);

%result (maybeT { -1 } (int r))

There is also a maybe DIS wich just takes the DIS and
defaults to 0 as the Nothing value.

8 Imports

Green Card “connects” with code in other modules
in two ways:

o Green Card reads the source code of any mod-
ules directly imported by the module being pro-
cessed. It extracts %dis function definitions
(only) from these modules. This provides an
easy mechanism for Green Card to import DIS
functions defined elsewhere.

e It is often important to arrange that a C
header file is #included when the C code frag-
ments in Green Card directives is compiled.

10

The %#include directive performs this delayed
#include. The syntax is exactly that of a C
#include apart from the initial %.

9 Invoking Green Card

The general syntax for invoking Green Card is:
green-card [options] [filename]

Green Card reads from standard input if no filename
is given. The options can be any of those:

--version Print the version number, then exit suc-
cessfully.

—--help Print a usage message listing all available op-
tions, then exit successfully.

--verbosge Print more information while processing
the input.

--include-dir <directories> Search the directo-
ries named in the colon (:) separated list for
imported files. The directories will be searched
in a left to right order.

—--fgc-safe Generates code that can use callbacks to
Haskell. This makes the generated code slower.

10 Related Work

o A Portable C Interface for Standard MI, of New
Jersey, by Lorenz Huelsbergen, describes the
implementation of a general interface to C for

SML/NJ.

o Simplified Wrapper and Interface Generator
(SWIG) generate interfaces from (extended)
ANSI C/C++ function and variable declara-
tions. It can generate output for Tcl/Tk,
Python, Perl5, Perl4d and Guile-iii. SWIG lives
at http://www.cs.utah.edu/ "beazley/SWIG/

e Foreign Function Interface GENerator (FFI-
GEN) is a tool that parses C header files and
presents an intermediate data representation
suitable for writing backends. FFIGEN lives at
http://www.cs.uoregon.edu/ " 1th/ffigen/

e Header2Schemeis a program which reads C++
header files and compiles them into C++ code.
This code implements the back end for a Scheme
interface to the classes defined by these header
files. Header2Scheme can be found at:

Imports. Should the %dis import mechanism be re-
cursive? That is, should Green Card read the
source of all modules in the transitive closure of
the module’s imports?

Structures. Green Card lacks explicit support for
translating structures between C and Haskell.
How important is it? What is the “right” way
to provide such support?

Error handling. The error handling provided by
%failis fairly rudimentary. It isn’t obvious how
to improve it in a systematic manner.

http://wuu-white.media.mit.edu/ "kbrussel/Header2Scheme/

11 Alternative design choices and av-

enues for improvement

Here we summarise aspects of Green Card that are
less than ideal, and indicate possible improvements.

DIS function syntax. DIS functions are a bit like
Haskell functions (which is why they start with
a lower case letter), but they are also very like
a “view” of a data type; that is, a pseudo-
constructor that allows you to build a value or
pattern-match on it. Maybe, therefore, DIS
functions should start with a capital letter.
(Then user-defined DISs could start with a plain
lower-case letter.) Trivial but important.

Automatic DIS generation. Pretty much every
newtype or single-constructor declaration that
is involved in a foreign language call needs a
corresponding %dis definition. Maybe this %dis
definition should be automated. On the other
hand, there are many fewer data types than pro-
cedures, so perhaps it isn’t too big a burden to
define a %dis for each.

User defined DISs. Should user-defined DISs be
explicitly declared, rather than inferred by the
omission of a DIS macro definition? Should it be
possible for the programmer to specify the name
of the marshall/unmarshall functions? (Omit-
ted for now because not strictly necessary.)

11

