
FVision: A Delarative Language for Visual TrakingJohn Peterson1, Paul Hudak1, Alastair Reid2, and Greg Hager31 Yale University, peterson-john�s.yale.edu and paul.hudak�yale.edu2 University of Utah, reid�s.utah.edu3 The Johns Hopkins University, hager�s.jhu.eduAbstrat. Funtional programming languages are not generally assoiated with om-putationally intensive tasks suh as omputer vision. We show that a delarative pro-gramming language like Haskell is e�etive for desribing omplex visual traking sys-tems. We have taken an existing C++ library for omputer vision, alled XVision, andused it to build FVision (pronouned \�ssion"), a library of Haskell types and funtionsthat provides a high-level interfae to the lower-level XVision ode. Using funtionalabstrations, users of FVision an build and test new visual traking systems rapidlyand reliably. The use of Haskell does not degrade system performane: omputations aredominated by low-level alulations expressed in C++ while the Haskell \glue ode" hasa negligible impat on performane.FVision is built using funtional reative programming (FRP) to express interation ina purely funtional manner. The resulting system demonstrates the viability of mixed-language programming: visual traking programs ontinue to spend most of their timeexeuting low-level image-proessing ode, while Haskell's advaned features allow us todevelop and test systems quikly and with on�dene. In this paper, we demonstratethe use of Haskell and FRP to express many basi abstrations of visual traking.1 IntrodutionAlgorithms for proessing dynami imagery | video streams omposed of a sequene of im-ages | have reahed a point where they an now be usefully employed in many appliations.Prime examples inlude vision-driven animation, human-omputer interfaes, and vision-guidedroboti systems. However, despite rapid progress on the tehnologial and sienti� fronts, thefat is that software systems whih inorporate vision algorithms are often quite diÆult to de-velop and maintain. This is not for lak of omputing power or underlying algorithms. Rather,it has to do with problems of saling simple algorithms to address omplex problems, pro-totyping and evaluating experimental systems, and e�etive integration of separate, omplex,omponents into a working appliation.There have been several reent attempts to build general-purpose image proessing libraries,for example [9, 13, 8℄. In partiular, the Intel Vision Libraries[7℄ is an example of a signi�antsoftware e�ort aimed at reating a general-purpose library of omputer vision algorithms. Mostof these e�orts have taken the traditional approah of building objet or subroutine librarieswithin languages suh as C++ or Java. While these libraries have well designed interfaes andontain a large seletion of vision data strutures and algorithms, they tend not to providelanguage abstrations that failitate dynami vision.The researh disussed in this paper started with XVision, a large library of C++ ode forvisual traking. XVision was designed using traditional objet-oriented tehniques. Althoughomputationally eÆient and engineered from the start for dynami vision, the abstrations



in XVision often failed to solve many basi software engineering problems. In partiular, theoriginal XVision often laked the abstration mehanisms neessary to integrate primitive visionomponents into larger systems, and it did not make it easy to parameterize vision algorithmsin a way that promoted software reusability.Rather than diretly attaking these issues in the C++ world, we hose a di�erent ap-proah: namely, using delarative programming tehniques. FVision is the result of our e�ort, aHaskell library that provides high-level abstrations for building omplex visual trakers fromthe eÆient low-level C++ ode found in XVision. The resulting system ombines the overalleÆieny of C++ with the software engineering advantages of funtional languages: exibility,omposability, modularity, abstration, and safety.This paper is organized as a short tour of our problem domain, puntuated by short ex-amples of how to onstrut and use FVision abstrations. To put visual traking into a morerealisti ontext, some of our examples inlude animation ode implemented in Fran, an ani-mation system built using FRP[1℄. Our primary goal is to explore issues of omposibility: wewill avoid disussion of the underlying primitive traking algorithms and fous on methodsfor transforming and ombining these primitive trakers. All of our examples are written inHaskell; we assume the reader is familiar with the basis of this language. See haskell.orgfor more further information about Haskell and funtional programming. FRP is a library oftypes and funtions written Haskell. The FRP library has been evolving rapidly; some funtionand type names used here may not math those in prior or future papers involving FRP. Wedo not assume prior experiene with FRP in this paper. Further information regarding FRPan be found at haskell.org/frp.2 Visual TrakingTraking is the inverse of animation. That is, animation maps a sene desription onto a (muhlarger) array of pixels, while traking maps the image onto a muh simpler sene desription.Animation is omputationally more eÆient when the sene hanges only slightly from oneframe to the next: instead of re-rendering the entire sene, a lever algorithm an reuse infor-mation from the previous frame and limit the amount of new rendering needed. Traking worksin a similar way: omputationally eÆient trakers exploit the fat that the sene hanges onlyslightly from one frame to the next.Consider an animation of two ubes moving under 3D transformations t1 and t2. Thesetransformations translate, sale, and rotate the ube into loation within the sene. In Fran,the following program plays this animation:sene :: Transform3B -> Transform3B -> GeometryBsene t1 t2 = ube1 `unionG` ube2where ube1 = unitCube `transformG` t1ube2 = unitCube `transformG` t2Rendering this animation is a proess of generating a video (i.e. image stream) that is aomposition of the videos of eah ube, eah of those in turn onstruted from the individualtransformations t1 and t2. In omputer vision we proess the image stream to determineloation and orientation of the two ubes, thus reovering the transformation parameters t1and t2.We aomplish this task by using knowledge of the sene struture, as aptured in a model,to ombine visual traking primitives and motion onstraints into an \observer." This observer



proesses the video input stream to determine the motion of the model. We assume that thebehavior of objets in the video is somehow \smooth": that is, objets do not jump suddenlyto di�erent loations in the sene. There are also a number of signi�ant di�erenes betweenvision and animation:{ Traking is fundamentally unertain: a feature is reognized with some measurable error.These error values an be used resolve onits between trakers: trakers that expressertainty an \nudge" other less ertain trakers toward their target.{ EÆient trakers are fundamentally history sensitive, arrying information from frame toframe. Animators generally hide this sort of optimization from the user.{ Animation builds a sene \top down": omplex objets are deomposed unambiguouslyinto simpler objets. A traker must proeed \bottom up" from basi features into a moreomplex objet, a proess whih is far more open to ambiguity.The entire XVision system onsists of approximately 27,000 lines of C++ ode. It inludesgeneri interfaes to hardware omponents (video soures and displays), a large set of imageproessing tools, and a generi notion of a \trakable feature." Using this as a basis, XVisionalso de�nes several trakers: speialized modules that reognize and follow spei� features inthe video image. XVision inludes trakers for features suh as edges, orners, referene images,and areas of known olor. These basi traking algorithms were re-expressed in Haskell usingbasi C++ funtions imported via GreenCard, a tool for importing C ode into Haskell.2.1 Primitive TrakersPrimitive trakers usually maintain an underlying state. This state de�nes the loation of thefeature as well as additional status information suh as a on�dene measure. The form of theloation is spei� to eah sort of traker. For a olor blob it is the area and enter; for a lineit is the two endpoints.Figure 1 illustrates this idea oneptually for the spei� ase of an SSD (Sum of SquaredDi�erenes) traking algorithm [2℄. This algorithm traks a region by attempting to omputean image motion and/or deformation to math the urrent appearane of a target to a �xedreferene. The steps in the algorithm are:1. Aquire an image region from the video input using the most reent estimate of targetposition and/or on�guration. In addition, reverse transform (warp) it. The aquired re-gion of interest is generally muh smaller than the full video frame. Pixels are possiblyinterpolated during warping to aount for rotation or strething.2. Compute the di�erene between this image and the referene image (the target).3. Determine what perturbation to the urrent state parameters would ause the (trans-formed) urrent image to best math the referene.4. Use this data to update the running state.As this proess requires only a small part of the original video frame it is very eÆient omparedto tehniques that searh an entire image. It also makes use of the fat that motion from frameto frame is small when omputing the perturbation to the urrent state. As a onsequene, itrequires that the target move relatively onsistently between frames in the image stream: anabrupt movement may ause the traker to lose its target.In XVision, trakers an be assembled into hierarhial onstraint networks de�ned bygeometri knowledge of the objet being traked (the model). This knowledge is typially a
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positionFig. 1. Figure of XVision feedbak loop.relationship between di�erent points or edges in the objet's image, suh as the four orners of asquare. If one orner is missing in the image (perhaps due to olusion) then the positions of theother three de�ne the expeted loation of the missing orner. This allows a disoriented trakerto resynhronize with its target. Although XVision inludes objet-oriented abstrations forthe onstrution of hierarhial onstraint networks, these abstrations had proven diÆult toimplement and limited in expressiveness. In the remainder of the paper we desribe a rih setof abstrations for traker omposition.3 Abstrations for Visual TrakingA amera onverts a ontinuously hanging sene into a disrete stream of images. In previouswork we have de�ned trakers in terms of standard stream proessing ombinators [11℄. Herethese ombinators are subsumed by FRP. FRP supports inter-operation between ontinuoustime systems and disrete time (stream proessing) systems. This allows FVision to ombinewith animation systems suh as Fran or robotis systems suh as Frob[10℄.Before examining the onstrution of trakers, we start by demonstrating the use of atraker in onjuntion with animation. This funtion proesses a video stream, of type Videolk, and generates an animation in whih a red dot is drawn over a traked image. The typeVideo is de�ned thusly:type Video lk = CEvent lk ImageThe CEvent lk a in FRP denotes a stream of values, eah of type a, synhronized to loklk. This lok type allows FVision to detet unintentional lok mismathes. Sine none ofthe ode in this paper is tied to a spei� lok the lk argument to CEvent will always beuninstantiated.



The user must �rst de�ne the referene image to be traked by using the mouse to seleta retangular area around the target in the video image. The retangular area is marked bypressing the mouse to indiate the top-left orner, then dragging and releasing the mouse atthe bottom-right orner. As the mouse is being dragged, an animated retangle is drawn overthe video image. One the mouse is released, the retangle is replaed by a red dot enteredon the retangle and an SSD traker is reated to move the dot through suessive frames.followMe :: Video lk -> PitureBfollowMe video =videoB `untilB`(lbp `snapshot_` mouse) ==>\orner1 -> retangle (lift0 orner1) mouse `over` videoB`untilB`((lbr `snapshot_` (pairB mouse videoB) ==>\(orner2, image) ->let traker = ssdTraker (getImage image orner1 orner2)mid = midPoint orner1 orner2b = runTrakerB videoB mid mid trakerin (redDot `transform2B` traker)`over` videoB ))where videoB = stepper nullImage video -- onvert image stream to behaviorredDot = ... -- draw a red dotretangle 1 2 = ... -- draw a retangleThe above ode an be read: \Behave as the video input until the left mouse button is pressed,at whih time a snapshot of the mouse position is taken. Then draw a retangle whose topleft-hand orner is �xed but whose bottom right-hand orner is whatever the urrent mouseposition is. Do this until the left mouse button is released, at whih point a snapshot of boththe mouse position and the video are taken. A traker is initialized with the midpoint of thetwo orners as the initial loation and the snapshot image as the referene. Use the output ofthe traker to ontrol the position of a red dot drawn over the video image." For example, ifyou draw a retangle around a fae the traker an the follow this fae as it moves around inthe amera's �eld of view. This traker is not robust: it may lose the fae, at whih point thered dot will ease to move meaningfully.Funtions suh as untilB and snapshot_ are part of FRP. By onvention, types and fun-tions suÆxed with \B" deal with behaviors: objets that vary ontinuously with time. Typesynonyms are used to abbreviate Behavior Piture as PitureB. Some funtions are im-ported from XVision: the getImage funtion extrats a retangular sub-image from the videostream. This image serves as a referene image for the SSD (Sum Squared Di�erene) traker.One the referene image is aquired, the traker (the ssdTraker funtion) de�nes a behaviorthat follows the loation of the referene image in the video stream. The runTrakerB funtionstarts the traker, pointing it initially to the seleted retangle, de�ning the transformationused in the animation.3.1 Types for TrakingThe goal of this researh is to de�ne trakers in a ompositional style. Following the prinipalsof type direted design, we start with some type de�nitions. A traker is omposed of twoparts: an observer whih aquires and normalizes some subsetion of the video image, and astepper whih examines this sub-image and omputes the motion of the traker.



type Observer observation a = (a, Image) -> observationtype Stepper measure observation a = (a, observation) -> measure aThe observer takes the present loation, a, of the traker and the urrent frame of video andreturns an observation: usually one or more sub-images of the frame. The loation may bedesignated using a single point (the Point2 type), as used in olor blob traking, or perhaps bya point, rotation, and sale (represented by the Transform2 type). Observers may also hoosesample at lower resolutions, dropping every other pixel for example. In any ase, the type a isdetermined by the partiular observer used.The stepper adjusts the loation of the traked feature based on the urrent loation andthe observation returned by the stepper. The stepper may also ompute additional values thatmeasure auray or other properties of the traker. We hoose to make the measure a typeonstrutor, measure a, rather than a separate value, (measure, a), so as to use overloadingto ombine measured values. XVision de�nes a variety of steppers, inluding the SSD stepper,olor blob steppers, edge detetors, and motion detetors.Measurement types are de�ned to be instanes of the Valued lass. This extrats the valuefrom its ontaining measurement type:lass Valued  wherevalueOf ::  a -> aMeasurement types are also in the Funtor lass, allowing modi�ation the ontained value.The Residual type used by the SSD traker in an example of a measurement:data Residual a =Residual { a :: resValue, residual :: Float }instane Valued Residual wherevalueOf = resValueCombining an observer and a stepper yields a traker: a mapping from a video stream ontoa stream of measured loations.type Traker measure a = Stepper measure Image aNote that Traker is a re�nement of the Stepper type. Trakers are onstruted by ombiningan observer with a stepper:mkTraker :: Observer observation a -> Stepper measure observation a ->Traker measure amkTraker o s = \(lo, image) -> let ob = o (lo, image) in s (lo, ob)3.2 A Primitive TrakerWe an now assemble a primitive FVision traker, the SSD traker. Given a referene image,the observer pulls in a similar sized image from the video soure at the urrent loation. Thestepper then ompares the image from the urrent frame with the referene, returning a newloation and a residual. This partiular traker uses a very simple loation: a 2-D point andan orientation. The SSD observer is an XVision primitive:grabTransform2 :: Size -> Observer Image Transform2



where Size is a type de�ning the retangular image size (in pixels) of the referene image.The position and orientation of the designated area, as de�ned in the Transform2, are used tointerpolate pixels from the video frame into an image of the orret size.The other omponent of SSD is the stepper: a funtion that ompares a referene imagewith the observed and determines the new loation of the image. The type of the stepper isssdStep :: Image -> Stepper Residual Image Transform2where Image argument is the referene image. A detailed desription of this partiular stepperis found in [11℄. Now for the full SSD traker:ssdTraker :: Image -> STraker Residual Transform2ssdTraker image =mkTraker (grabTransform2 (sizeOf image)) (ssdStep image)Before we an use a traker, we need a funtion that binds a traker to a video soure andinitial loation:runTraker :: Valued measure =>Video lk -> a -> Traker measure a -> CEvent lk arunTraker video a0 traker = ma whereloations = delay a0 aStreamma = lift2 (,) loations video ==> trakeraStream = ma ==> valueOfThe delay funtion delays the values of an event stream by one lok yle, returning an initialvalue, here a0, on the �rst lok tik.We an also run a traker to reate a ontinuous behavior, Behavior b.runTrakerB :: Valued measure =>Video lk -> measure a -> Traker measure a -> CEvent lk arunTrakerB video ma0 trk =stepper ma0 (runTraker video (valueOf ma0) trk)In this funtion, we need a measured initial state rather than an unmeasured one sine theinitial value of the behavior is measured.The lk in the type of runTraker is not of use in these small examples but is essential tothe integrity of multi-rate systems. For example, onsider an animation driven by two separatevideo soures:sene :: Video lk1 -> Video lk2 -> PitureBThe type system ensures that the synhronous parts of the system, trakers loked by eitherof the video soures, are used onsistently: no synhronous operation may ombine streamswith di�erent lok rates. By onverting the loked streams to behaviors, we an use bothvideo soures to drive the resulting animation.3.3 More Complex TrakersConsider an animator that swithes between two di�erent images:sene :: Transform2B -> BoolB -> PitureBsene plae whih = transform2 plae (ifB whih piture1 piture2)



A traker for this sene must reover both the loation of the piture, plae (a 2-D transfor-mation) and the boolean that selets the piture, whih. Previously, we inverted the transfor-mation for a �xed piture. Here we must also invert the ifB funtion to determine the stateof the boolean. We also we wish to retain the same ompositional program style used by theanimator: our traking funtion should have a struture similar to this sene funtion.The omposite traker must wath for both images, piture1 and piture2 at all times.To determine whih image is present, we examine the residual produed by SSD, a measureof the overall di�erene between the traked image and the referene image. We formalize thisnotion of \best math" using the Ord lass:instane Ord (Residual a) wherer1 > r2 = residual r1 < residual r2This states that smaller residuals are better than large ones.The bestOf funtion ombines a pair of trakers into a traker that follows whihever pro-dues a better measure. The trakers share a ommon loation: in the original sene desription,there is only one transformation even though there are two pitures. The resulting values areaugmented by a boolean indiating whih of the two underlying trakers is best orrelated withthe present image. This value orresponds to the whih of the animator. The projetion of themeasured values onto the traker output type are ignored: this ombines the internal trakerstates instead of the observed values seen from outside.bestOf :: (Funtor measure, Ord measure) =>Traker measure a -> Traker measure a -> Traker measure (a, Bool)bestOf t1 t2 =\((lo, _), v) -> max (fmap (\x -> (x, True)) (t1 (lo, v)))(fmap (\x -> (x, False)) (t2 (lo, v)))The struture of bestOf is simple: the loation (minus the additional boolean) is passed toboth traker funtions. The results are ombined using max. The fmap funtions are used totag the loations, exposing whih of the two images is presently on target.This same ode an be used on steppers as well as trakers; only the signature restritsbestOf to use trakers. This signature is also valid:bestOf :: (Funtor measure, Ord measure) =>Stepper measure observation a -> Stepper measure observation a ->Stepper measure observation (a, Bool)Thus steppers are omposable in the same manner as trakers. This is quite useful: by om-posing steppers rather than trakers we perform one observation instead of two. Thus the useran de�ne a more eÆient traker when ombining trakers with a ommon observation.Higher-order funtions are a natural way to express this sort of abstration in FVision.In C++ this sort of abstration is more umbersome: losures (used to hold partially appliedfuntions) must be de�ned and built manually.3.4 Adding PreditionWe may to improve traking auray by inorporating better loation predition into thesystem. When traking a moving objet we an use a linear approximation of motion to moreaurately predit objet position in the next frame. A predition funtion has this generalform:



type Preditor a = Behavior (Time -> a)That is, at a time t the preditor de�nes a funtion on times greater than t based on observationsourring before t.Adding a preditor to runTraker is simple:runTrakerPred :: Valued measure =>Video lk -> Traker measure a -> Preditor a -> CEvent lk arunTrakerPred video traker p =withTimeE video `snapshot` p==> \((v,t), preditor) -> traker (preditor t, v)The FRP primitive withTimeE adds an expliit time to eah frame of the video. Then snapshot,another FRP primitive, samples the preditor at the urrent time and adds sampled values ofthe predition funtion to the stream.This is quite di�erent from runTraker; there seems to be no onnetion from output ofthe traker bak to the input for the next step. The feedbak loop is now outside the traker,expressed by the preditor.Using predition, a traking system looks like this:followImage :: Video lk -> Image -> Point2 -> CEvent lk Point2followImage video i p0 =let ssd = ssdTraker ip = interp2 p0 positionspositions = runTrakerPred video p ssdinterp2 :: Point2 -> CEvent lk Point2 -> Preditor Point2The interp2 funtion implements simple linear predition. The �rst argument is the initialpredition seen before the initial interpolation point arrives. This initial value allows the p0passed to interp2 to serve as the initial observed loation.4 Generalized Composite TrakersWe have already demonstrated one way to ompose trakers: bestOf. Here, we explore a numberof more general ompositions.4.1 Trakers in ParallelAn objet in an animation may ontain many trakable features. These features do not moveindependently: their loations are related to eah other in some way. Consider the followingfuntion for animating a square:sene :: Transform2B -> PitureBsene t = transform2 t (polygon [(0,0), (0,1), (1,1), (1,0)℄)In the resulting animation, trakers an disern four di�erent line segments - one for eah edgeof the square. The positions of these line segments are somewhat orrelated: opposite edgesremain in parallel after transformation. Thus we have a level of redundany in the trakablefeatures. Our goal is to exploit this redundany to make our traking system more robust byutilizing relationships among traked objets.



A omposite traker ombines trakers for individual objet features into a traker forthe overall objet. The relationship between the objet and its features is represented usinga pair of funtions: a projetion and an embedding. These funtions map between the modelstate (parameters de�ning the overall objet) and the states of the omponent trakers. Theprojetion funtion maps a model state onto a set of omponent states and the embeddingfuntion ombines the omponent states into a model state. This funtion pair is denoted bythe following type:type EPair a b = (a -> b, b -> a)We now build a omposite traker that ombines the states of two omponent trakers. Inthis example, we de�ne a orner traker using two omponent edge trakers. Edge trakers areimplemented using the following XVision stepper:edgeStepper :: Stepper Sharpness Image LineSegThe loation maintained by the traker is a line segment, denoted by the LineSeg type. Thistraker observes an Image and measures the quality of traking with the Sharpness type. ThisSharpness type has the same struture as the Residual type but is mathematially distint.To ombine two line segments into a orner, we �nd the intersetion of the underlying lines(possibly outside the line segments) and then \nudge" the line segment to this point. This isruial sine the edge trakers tend to reep away from the orner. The underlying geometritypes are as follows:type LineSeg = (Point2, Vetor2)type Corner = (Point2, Vetor2, Vetor2)We fore the length of the vetor de�ning a line segment to remain onstant during traking,allowing the use of a �xed size window on the underlying video stream. The projetion andembedding funtions are thus:ornerToSegs :: Corner -> (LineSeg, LineSeg)ornerToSegs (orner, v1, v2) = ((orner, v1), (orner, v2))segsToCorner :: (LineSeg, LineSeg) -> CornersegsToCorner (seg1�(_,v1), seg2�(,v2)) = (segInterset seg1 seg2, v1, v2)Next we need a funtion to ombine two trakers using a projetion / embedding pair.join2 :: (Joinable measure, Funtor Measure) =>Traker measure a -> Traker measure b -> EPair (a,b)  -> Traker measure join2 t1 t2 (fromTup, toTup) =\(, v) -> let (a,b) = toTup ma = t1 (a,v)mb = t2 (b,v)in fmap fromTup (joinTup2 (ma, mb))The struture of this funtion is the same as the bestOf funtion de�ned earlier. There isa signi�ant addition though: the type lass Joinable. Here we reate a measured objetfrom more than one measured sub-objets. Thus we must ombine the measurements of thesub-objets to produe an overall measurement. The Joinable lass aptures this idea:lass Joinable l wherejoinTup2 :: (l a,l b) -> l (a, b)joinTup3 :: (l a,l b,l ) -> l (a, b, ) -- and so oninstane Joinable Sharpness where ...



The joinTup2 funtion joins two measured values into a single one, ombining the measure-ments in some appropriate way. Joining measurements in a systemati manner is diÆult; wewill avoid addressing this problem and omit instanes of Joinable.Another way to implement joining is to allow the embedding funtion to see the underlyingmeasurements and return a potentially di�erent sort of measurement:join2m :: Traker measure a -> Traker measure b ->((measure a, measure b) -> measure2 ,  -> (a, b)) ->Traker measure2 This an be further generalized to allow all of the omponent trakers to use di�erent mea-surements. However, in most ases we an hide the details of joining measured values within atype lass and spare the user this extra omplexity.Now for the orner traker:trakCorner :: Traker Sharpness LineSeg -> Traker Sharpness LineSeg ->Traker Sharpness CornertrakCorner l1 l2 = join2 l1 l2 (segsToCorner, ornerToSegs)The join2 funtion is part of a family of joining funtions, eah integrating some spei�number of underlying trakers.The orner traker inorporates \rosstalk" between the states of two trakers but does nothave to deal with redundant information. We now return to traking a transformed square.Given four of these orner trakers, we now ompose them into a square traker. The underlyingdatatype for a square is similar to the orner:type Square = (Point2, Point2, Point2)We need speify only three points; the fourth is funtionally dependent on the other three.This type de�nes the image of a square under aÆne transformation: from this image we anreonstrut the transformation (loation, rotation, saling, and shear). Our problem now isto map four traked orners onto the three points de�ning the Square type. There are manypossibilities: for example, we ould throw out the point whose edges (the two vetors assoiatedwith the orner) point the least towards the other orners, probably indiating that the ornertraker is lost. Here, we present a strategy based on the Sharpness measure oming from theunderlying trakers.The only signi�ant di�erene between the previous example and this one is in the em-bedding funtion. We need to ombine measured values in the embedding; thus the traker isde�ned using join4m. First, we need to lift a funtion into the domain of measured values.Using the Joinable lass we de�ne the following:jLift3 :: Joinable m => (a -> b ->  -> d) -> (m a -> m b -> m  -> m d)jLift3 f = \x y z -> let t = joinTup3 x y z infmap (\(x',y',z') -> f x' y' z') tUsing this, we build a funtion that generates a measured square from three measured points:mkSquare :: Sharpness Point2 -> Sharpness Point2 -> Sharpness Point2) ->Sharpness SquaremkSquare = jLift3 (\x y z -> (x,y,z))Now we generate all possible squares de�ned by the orners, eah using three of the fouredge points, and hoose the one with the best Sharpness measure using max:



bestSquare :: (Sharpness Point2, Sharpness Point2, Sharpness Point2,Sharpness Point2) -> Sharpness SquarebestSquare (v1, v2, v3, v4) =mkSquare v1 v2 v3 `max` mkSquare v1 v2 v4 `max`mkSquare v1 v3 v4 `max` mkSquare v2 v3 v4In summary, the family of join funtions apture the basi struture of the parallel trakeromposition. While this strategy oasionally requires somewhat omplex embedding funtionsthis is exatly where the underlying domain is also omplex. Also, we an use overloading toexpress simple embedding strategies in a onise and readable way.4.2 Trakers in SeriesAnother basi strategy for ombining trakers is ombine slow but robust \wide �eld" trakerswith fast but fragile \narrow-�eld" trakers to yield an eÆient robust traking network. Thestruture of this type of traker does not orrespond to an animator sine this deals withperformane rather than expressiveness. Swithing between di�erent trakers is governed bymeasures that determine whether the traker is \on feature" or not. Consider the followingthree trakers:{ A motion detetor that loates areas of motion in the full frame.{ A olor blob traker that follows regions of similarly olored pixels.{ A SSD traker targeted at a spei� image.Our goal is to ombine these trakers to follow a spei� fae with an unknown initial loation.The motion detetor �nds an area of movement. In this area, the blob traker �nds a groupof esh-olored pixels. Finally, this blob is mathed against the referene image. Eah of thesetrakers suppresses the one immediately proeeding it: if the SSD traker is \on feature" thereis no need for the other trakers to run.The type signatures of these trakers are relatively simple:motionDetet :: Traker SizeAndPlae ()blob :: Color -> Traker SizedAndOriented Point2ssd :: Image -> Traker Residual Transform2The motionDetet traker is an example of a stateless traker. That is, it does not arryinformation from frame to frame. Instead, it looks at the entire frame (atually a sparse overingof the entire frame) at eah time step. Sine there is no loation to feed to the next step, allof the information oming out of motionDetet is in the measure. For the blob traker we getboth a size and an orientation, the axis that minimizes distane to the points.To ompose trakers in series, we use a pair of state projetion funtions. This is similar tothe embedding pairs used earlier exept that there is an extra Maybe in the types:type SProjetion m1 a1 m2 a2 = (m1 a1 -> Maybe s2, m2 a2 -> Maybe s1)These funtions lead up and down a ladder of trakers. At every step, if in the lower state wego \up" if the urrent traker an produe an aeptable state for the next higher traker. Ifwe are in the higher state, we drop down if the urrent traker is not in a suitable situation.The traker types reet the union of the underlying traker set. To handle measures, weneed a higher order version of Either:



data EitherT t1 t2 a = LeftT (t1 a) | RightT (t2 a)instane (Valued t1, Valued t2) => Valued (EitherT t1 t2) wherevalueOf (LeftT x) = valueOf xvalueOf (RightT x) = valueOf xNow we ombine two trakers in series:tower :: Traker m1 a1 -> Traker m2 a2 -> SProjetion m1 a1 m2 a2 ->Traker (EitherT m1 m2) (Either a1 a2)tower low high (up, down) =\(a, v) -> ase a ofLeft a1 -> let ma1 = low (a1, v) inase up ma1 ofNothing -> LeftT (fmap Left ma1)Just a2 ->let ma2 = high (a2, v) inase down ma2 ofNothing -> RightT (fmap Right ma2)Just _ -> LeftT (fmap Left ma1)Right a2 -> let ma2 = high (a2, v) inase down ma2 ofNothing -> RightT (fmap Right ma2)Just a1 -> LeftT (fmap Left (low ma1))This alls eah of the sub-trakers no more than one per time step. The invariants hereare that we always attempt to limb higher if in the lower state and that we never return avalue in the higher state if the down funtion rejets it.Before using the tower funtion, we must onstrut the state projetions. Without showingatual ode, they funtion as follows:{ Move from motionDetet to blob whenever the size of the area in motion is greater thansome threshold (normally set fairly small). Use the enter of the area in motion at theinitial state in the blob traker.{ Always try to move from blob to SSD. Use the blob size and orientation to reate the initialtransformation for the SSD traker state.{ Drop from ssd to blob when the residual is greater than some threshold. Use the positionin the transformation an the initial state for blob.{ Drop from blob to motionDetet when the group of esh-toned pixels is too small.The omposite traker has the following struture:faeTrak :: Image ->Traker (EitherT (EitherT SizeAndPlae SizedAndOriented) Residual)(Either (Either () Point2) Transform2)faeTrak image =tower (tower motionDetet blob (upFromMD, downFromBlob))ssd onlyRight (upFromBlob, downFromSSD)whereupFromMD mt =if mArea mt > mdThreshold then Just mCenter mt else NothingdownFromBlob mt =



if blobSize mt < bThreshold then Just (blobCenter mt) else NothingupFromBlob mt =Just (translate2 (blobCenter mt)`ompose2`rotate2 (blobOrientation mt))downFromSSD mt =if residual mt > ssdthresholdthen Just (origin2 `transform2` (valueOf mt))else NothingThe onlyRight funtion is needed beause the omposition of motion detetion and blobtraking yields an Either type instead of a blob type. The onlyRight funtion (not shown)keeps the ssd traker from pulling on the underlying traker when it is looking for motionrather than at a blob.The output of this traker would normally be �ltered to remove states from the \bakup"trakers. That is, the ultimate result of this traker would probably be Behavior (MaybePoint2) rather that Behavior Point2. Thus when the omposite traker is hunting for a faerather than on the fae this will be reeted in the output of the traker.5 PerformanePrograms written in FVision tend to run at least 90% as fast as the native C++ ode, eventhough they are being run by a Haskell interpreter. This an be attributed to the fat that thebottlenek in vision proessing programs is not in the high-level algorithms, as implementedin Haskell, but in the low-level image proessing algorithms written in C++. As a result, wehave found that FVision is a realisti alternative to C++ for prototyping or even deliveringappliations. While there are, no doubt, situations in whih the performane of Haskell odemay require migration to C++ for eÆieny, it is often the ase that the use of a delarativelanguage to express high-level organization of a vision system has no appreiable impat onperformane. Furthermore, the Haskell interpreter used in our experiment, Hugs, has a verysmall footprint and an be inluded in an appliation without seriously inreasing the overallsize of vision library.6 Related WorkWe are not aware of any other e�orts to reate a delarative language for omputer vision,although there does exist a DSL for writing video devie drivers [12℄ whih is at a lower levelthan that this work.There are many on tools for building domain-spei� languages suh as FVision fromsrath, but most relevant are previous e�orts of our own on embedded DSL's [5, 4℄ that usean existing delarative language as the basi framework. General disussions of the advantagesof programming with pure funtions are also quite numerous; two of partiular relevane toour work are one using funtional languages for rapid prototyping [3℄ and one that desribesthe power of higher-order funtions and lazy evaluation as the \glue" needed for modularprogramming[6℄.
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