
FVision: A De
larative Language for Visual Tra
kingJohn Peterson1, Paul Hudak1, Alastair Reid2, and Greg Hager31 Yale University, peterson-john�
s.yale.edu and paul.hudak�yale.edu2 University of Utah, reid�
s.utah.edu3 The Johns Hopkins University, hager�
s.jhu.eduAbstra
t. Fun
tional programming languages are not generally asso
iated with 
om-putationally intensive tasks su
h as 
omputer vision. We show that a de
larative pro-gramming language like Haskell is e�e
tive for des
ribing 
omplex visual tra
king sys-tems. We have taken an existing C++ library for 
omputer vision, 
alled XVision, andused it to build FVision (pronoun
ed \�ssion"), a library of Haskell types and fun
tionsthat provides a high-level interfa
e to the lower-level XVision 
ode. Using fun
tionalabstra
tions, users of FVision 
an build and test new visual tra
king systems rapidlyand reliably. The use of Haskell does not degrade system performan
e: 
omputations aredominated by low-level 
al
ulations expressed in C++ while the Haskell \glue 
ode" hasa negligible impa
t on performan
e.FVision is built using fun
tional rea
tive programming (FRP) to express intera
tion ina purely fun
tional manner. The resulting system demonstrates the viability of mixed-language programming: visual tra
king programs 
ontinue to spend most of their timeexe
uting low-level image-pro
essing 
ode, while Haskell's advan
ed features allow us todevelop and test systems qui
kly and with 
on�den
e. In this paper, we demonstratethe use of Haskell and FRP to express many basi
 abstra
tions of visual tra
king.1 Introdu
tionAlgorithms for pro
essing dynami
 imagery | video streams 
omposed of a sequen
e of im-ages | have rea
hed a point where they 
an now be usefully employed in many appli
ations.Prime examples in
lude vision-driven animation, human-
omputer interfa
es, and vision-guidedroboti
 systems. However, despite rapid progress on the te
hnologi
al and s
ienti�
 fronts, thefa
t is that software systems whi
h in
orporate vision algorithms are often quite diÆ
ult to de-velop and maintain. This is not for la
k of 
omputing power or underlying algorithms. Rather,it has to do with problems of s
aling simple algorithms to address 
omplex problems, pro-totyping and evaluating experimental systems, and e�e
tive integration of separate, 
omplex,
omponents into a working appli
ation.There have been several re
ent attempts to build general-purpose image pro
essing libraries,for example [9, 13, 8℄. In parti
ular, the Intel Vision Libraries[7℄ is an example of a signi�
antsoftware e�ort aimed at 
reating a general-purpose library of 
omputer vision algorithms. Mostof these e�orts have taken the traditional approa
h of building obje
t or subroutine librarieswithin languages su
h as C++ or Java. While these libraries have well designed interfa
es and
ontain a large sele
tion of vision data stru
tures and algorithms, they tend not to providelanguage abstra
tions that fa
ilitate dynami
 vision.The resear
h dis
ussed in this paper started with XVision, a large library of C++ 
ode forvisual tra
king. XVision was designed using traditional obje
t-oriented te
hniques. Although
omputationally eÆ
ient and engineered from the start for dynami
 vision, the abstra
tions



in XVision often failed to solve many basi
 software engineering problems. In parti
ular, theoriginal XVision often la
ked the abstra
tion me
hanisms ne
essary to integrate primitive vision
omponents into larger systems, and it did not make it easy to parameterize vision algorithmsin a way that promoted software reusability.Rather than dire
tly atta
king these issues in the C++ world, we 
hose a di�erent ap-proa
h: namely, using de
larative programming te
hniques. FVision is the result of our e�ort, aHaskell library that provides high-level abstra
tions for building 
omplex visual tra
kers fromthe eÆ
ient low-level C++ 
ode found in XVision. The resulting system 
ombines the overalleÆ
ien
y of C++ with the software engineering advantages of fun
tional languages: 
exibility,
omposability, modularity, abstra
tion, and safety.This paper is organized as a short tour of our problem domain, pun
tuated by short ex-amples of how to 
onstru
t and use FVision abstra
tions. To put visual tra
king into a morerealisti
 
ontext, some of our examples in
lude animation 
ode implemented in Fran, an ani-mation system built using FRP[1℄. Our primary goal is to explore issues of 
omposibility: wewill avoid dis
ussion of the underlying primitive tra
king algorithms and fo
us on methodsfor transforming and 
ombining these primitive tra
kers. All of our examples are written inHaskell; we assume the reader is familiar with the basi
s of this language. See haskell.orgfor more further information about Haskell and fun
tional programming. FRP is a library oftypes and fun
tions written Haskell. The FRP library has been evolving rapidly; some fun
tionand type names used here may not mat
h those in prior or future papers involving FRP. Wedo not assume prior experien
e with FRP in this paper. Further information regarding FRP
an be found at haskell.org/frp.2 Visual Tra
kingTra
king is the inverse of animation. That is, animation maps a s
ene des
ription onto a (mu
hlarger) array of pixels, while tra
king maps the image onto a mu
h simpler s
ene des
ription.Animation is 
omputationally more eÆ
ient when the s
ene 
hanges only slightly from oneframe to the next: instead of re-rendering the entire s
ene, a 
lever algorithm 
an reuse infor-mation from the previous frame and limit the amount of new rendering needed. Tra
king worksin a similar way: 
omputationally eÆ
ient tra
kers exploit the fa
t that the s
ene 
hanges onlyslightly from one frame to the next.Consider an animation of two 
ubes moving under 3D transformations t1 and t2. Thesetransformations translate, s
ale, and rotate the 
ube into lo
ation within the s
ene. In Fran,the following program plays this animation:s
ene :: Transform3B -> Transform3B -> GeometryBs
ene t1 t2 = 
ube1 `unionG` 
ube2where 
ube1 = unitCube `transformG` t1
ube2 = unitCube `transformG` t2Rendering this animation is a pro
ess of generating a video (i.e. image stream) that is a
omposition of the videos of ea
h 
ube, ea
h of those in turn 
onstru
ted from the individualtransformations t1 and t2. In 
omputer vision we pro
ess the image stream to determinelo
ation and orientation of the two 
ubes, thus re
overing the transformation parameters t1and t2.We a

omplish this task by using knowledge of the s
ene stru
ture, as 
aptured in a model,to 
ombine visual tra
king primitives and motion 
onstraints into an \observer." This observer



pro
esses the video input stream to determine the motion of the model. We assume that thebehavior of obje
ts in the video is somehow \smooth": that is, obje
ts do not jump suddenlyto di�erent lo
ations in the s
ene. There are also a number of signi�
ant di�eren
es betweenvision and animation:{ Tra
king is fundamentally un
ertain: a feature is re
ognized with some measurable error.These error values 
an be used resolve 
on
i
ts between tra
kers: tra
kers that express
ertainty 
an \nudge" other less 
ertain tra
kers toward their target.{ EÆ
ient tra
kers are fundamentally history sensitive, 
arrying information from frame toframe. Animators generally hide this sort of optimization from the user.{ Animation builds a s
ene \top down": 
omplex obje
ts are de
omposed unambiguouslyinto simpler obje
ts. A tra
ker must pro
eed \bottom up" from basi
 features into a more
omplex obje
t, a pro
ess whi
h is far more open to ambiguity.The entire XVision system 
onsists of approximately 27,000 lines of C++ 
ode. It in
ludesgeneri
 interfa
es to hardware 
omponents (video sour
es and displays), a large set of imagepro
essing tools, and a generi
 notion of a \tra
kable feature." Using this as a basis, XVisionalso de�nes several tra
kers: spe
ialized modules that re
ognize and follow spe
i�
 features inthe video image. XVision in
ludes tra
kers for features su
h as edges, 
orners, referen
e images,and areas of known 
olor. These basi
 tra
king algorithms were re-expressed in Haskell usingbasi
 C++ fun
tions imported via GreenCard, a tool for importing C 
ode into Haskell.2.1 Primitive Tra
kersPrimitive tra
kers usually maintain an underlying state. This state de�nes the lo
ation of thefeature as well as additional status information su
h as a 
on�den
e measure. The form of thelo
ation is spe
i�
 to ea
h sort of tra
ker. For a 
olor blob it is the area and 
enter; for a lineit is the two endpoints.Figure 1 illustrates this idea 
on
eptually for the spe
i�
 
ase of an SSD (Sum of SquaredDi�eren
es) tra
king algorithm [2℄. This algorithm tra
ks a region by attempting to 
omputean image motion and/or deformation to mat
h the 
urrent appearan
e of a target to a �xedreferen
e. The steps in the algorithm are:1. A
quire an image region from the video input using the most re
ent estimate of targetposition and/or 
on�guration. In addition, reverse transform (warp) it. The a
quired re-gion of interest is generally mu
h smaller than the full video frame. Pixels are possiblyinterpolated during warping to a

ount for rotation or stret
hing.2. Compute the di�eren
e between this image and the referen
e image (the target).3. Determine what perturbation to the 
urrent state parameters would 
ause the (trans-formed) 
urrent image to best mat
h the referen
e.4. Use this data to update the running state.As this pro
ess requires only a small part of the original video frame it is very eÆ
ient 
omparedto te
hniques that sear
h an entire image. It also makes use of the fa
t that motion from frameto frame is small when 
omputing the perturbation to the 
urrent state. As a 
onsequen
e, itrequires that the target move relatively 
onsistently between frames in the image stream: anabrupt movement may 
ause the tra
ker to lose its target.In XVision, tra
kers 
an be assembled into hierar
hi
al 
onstraint networks de�ned bygeometri
 knowledge of the obje
t being tra
ked (the model). This knowledge is typi
ally a



model
inverse

acquire

∆position

position

-

reference
image

∫

image

initial
positionFig. 1. Figure of XVision feedba
k loop.relationship between di�erent points or edges in the obje
t's image, su
h as the four 
orners of asquare. If one 
orner is missing in the image (perhaps due to o

lusion) then the positions of theother three de�ne the expe
ted lo
ation of the missing 
orner. This allows a disoriented tra
kerto resyn
hronize with its target. Although XVision in
ludes obje
t-oriented abstra
tions forthe 
onstru
tion of hierar
hi
al 
onstraint networks, these abstra
tions had proven diÆ
ult toimplement and limited in expressiveness. In the remainder of the paper we des
ribe a ri
h setof abstra
tions for tra
ker 
omposition.3 Abstra
tions for Visual Tra
kingA 
amera 
onverts a 
ontinuously 
hanging s
ene into a dis
rete stream of images. In previouswork we have de�ned tra
kers in terms of standard stream pro
essing 
ombinators [11℄. Herethese 
ombinators are subsumed by FRP. FRP supports inter-operation between 
ontinuoustime systems and dis
rete time (stream pro
essing) systems. This allows FVision to 
ombinewith animation systems su
h as Fran or roboti
s systems su
h as Frob[10℄.Before examining the 
onstru
tion of tra
kers, we start by demonstrating the use of atra
ker in 
onjun
tion with animation. This fun
tion pro
esses a video stream, of type Video
lk, and generates an animation in whi
h a red dot is drawn over a tra
ked image. The typeVideo is de�ned thusly:type Video 
lk = CEvent 
lk ImageThe CEvent 
lk a in FRP denotes a stream of values, ea
h of type a, syn
hronized to 
lo
k
lk. This 
lo
k type allows FVision to dete
t unintentional 
lo
k mismat
hes. Sin
e none ofthe 
ode in this paper is tied to a spe
i�
 
lo
k the 
lk argument to CEvent will always beuninstantiated.



The user must �rst de�ne the referen
e image to be tra
ked by using the mouse to sele
ta re
tangular area around the target in the video image. The re
tangular area is marked bypressing the mouse to indi
ate the top-left 
orner, then dragging and releasing the mouse atthe bottom-right 
orner. As the mouse is being dragged, an animated re
tangle is drawn overthe video image. On
e the mouse is released, the re
tangle is repla
ed by a red dot 
enteredon the re
tangle and an SSD tra
ker is 
reated to move the dot through su

essive frames.followMe :: Video 
lk -> Pi
tureBfollowMe video =videoB `untilB`(lbp `snapshot_` mouse) ==>\
orner1 -> re
tangle (lift0 
orner1) mouse `over` videoB`untilB`((lbr `snapshot_` (pairB mouse videoB) ==>\(
orner2, image) ->let tra
ker = ssdTra
ker (getImage image 
orner1 
orner2)mid = midPoint 
orner1 
orner2b = runTra
kerB videoB mid mid tra
kerin (redDot `transform2B` tra
ker)`over` videoB ))where videoB = stepper nullImage video -- 
onvert image stream to behaviorredDot = ... -- draw a red dotre
tangle 
1 
2 = ... -- draw a re
tangleThe above 
ode 
an be read: \Behave as the video input until the left mouse button is pressed,at whi
h time a snapshot of the mouse position is taken. Then draw a re
tangle whose topleft-hand 
orner is �xed but whose bottom right-hand 
orner is whatever the 
urrent mouseposition is. Do this until the left mouse button is released, at whi
h point a snapshot of boththe mouse position and the video are taken. A tra
ker is initialized with the midpoint of thetwo 
orners as the initial lo
ation and the snapshot image as the referen
e. Use the output ofthe tra
ker to 
ontrol the position of a red dot drawn over the video image." For example, ifyou draw a re
tangle around a fa
e the tra
ker 
an the follow this fa
e as it moves around inthe 
amera's �eld of view. This tra
ker is not robust: it may lose the fa
e, at whi
h point thered dot will 
ease to move meaningfully.Fun
tions su
h as untilB and snapshot_ are part of FRP. By 
onvention, types and fun
-tions suÆxed with \B" deal with behaviors: obje
ts that vary 
ontinuously with time. Typesynonyms are used to abbreviate Behavior Pi
ture as Pi
tureB. Some fun
tions are im-ported from XVision: the getImage fun
tion extra
ts a re
tangular sub-image from the videostream. This image serves as a referen
e image for the SSD (Sum Squared Di�eren
e) tra
ker.On
e the referen
e image is a
quired, the tra
ker (the ssdTra
ker fun
tion) de�nes a behaviorthat follows the lo
ation of the referen
e image in the video stream. The runTra
kerB fun
tionstarts the tra
ker, pointing it initially to the sele
ted re
tangle, de�ning the transformationused in the animation.3.1 Types for Tra
kingThe goal of this resear
h is to de�ne tra
kers in a 
ompositional style. Following the prin
ipalsof type dire
ted design, we start with some type de�nitions. A tra
ker is 
omposed of twoparts: an observer whi
h a
quires and normalizes some subse
tion of the video image, and astepper whi
h examines this sub-image and 
omputes the motion of the tra
ker.



type Observer observation a = (a, Image) -> observationtype Stepper measure observation a = (a, observation) -> measure aThe observer takes the present lo
ation, a, of the tra
ker and the 
urrent frame of video andreturns an observation: usually one or more sub-images of the frame. The lo
ation may bedesignated using a single point (the Point2 type), as used in 
olor blob tra
king, or perhaps bya point, rotation, and s
ale (represented by the Transform2 type). Observers may also 
hoosesample at lower resolutions, dropping every other pixel for example. In any 
ase, the type a isdetermined by the parti
ular observer used.The stepper adjusts the lo
ation of the tra
ked feature based on the 
urrent lo
ation andthe observation returned by the stepper. The stepper may also 
ompute additional values thatmeasure a

ura
y or other properties of the tra
ker. We 
hoose to make the measure a type
onstru
tor, measure a, rather than a separate value, (measure, a), so as to use overloadingto 
ombine measured values. XVision de�nes a variety of steppers, in
luding the SSD stepper,
olor blob steppers, edge dete
tors, and motion dete
tors.Measurement types are de�ned to be instan
es of the Valued 
lass. This extra
ts the valuefrom its 
ontaining measurement type:
lass Valued 
 wherevalueOf :: 
 a -> aMeasurement types are also in the Fun
tor 
lass, allowing modi�
ation the 
ontained value.The Residual type used by the SSD tra
ker in an example of a measurement:data Residual a =Residual { a :: resValue, residual :: Float }instan
e Valued Residual wherevalueOf = resValueCombining an observer and a stepper yields a tra
ker: a mapping from a video stream ontoa stream of measured lo
ations.type Tra
ker measure a = Stepper measure Image aNote that Tra
ker is a re�nement of the Stepper type. Tra
kers are 
onstru
ted by 
ombiningan observer with a stepper:mkTra
ker :: Observer observation a -> Stepper measure observation a ->Tra
ker measure amkTra
ker o s = \(lo
, image) -> let ob = o (lo
, image) in s (lo
, ob)3.2 A Primitive Tra
kerWe 
an now assemble a primitive FVision tra
ker, the SSD tra
ker. Given a referen
e image,the observer pulls in a similar sized image from the video sour
e at the 
urrent lo
ation. Thestepper then 
ompares the image from the 
urrent frame with the referen
e, returning a newlo
ation and a residual. This parti
ular tra
ker uses a very simple lo
ation: a 2-D point andan orientation. The SSD observer is an XVision primitive:grabTransform2 :: Size -> Observer Image Transform2



where Size is a type de�ning the re
tangular image size (in pixels) of the referen
e image.The position and orientation of the designated area, as de�ned in the Transform2, are used tointerpolate pixels from the video frame into an image of the 
orre
t size.The other 
omponent of SSD is the stepper: a fun
tion that 
ompares a referen
e imagewith the observed and determines the new lo
ation of the image. The type of the stepper isssdStep :: Image -> Stepper Residual Image Transform2where Image argument is the referen
e image. A detailed des
ription of this parti
ular stepperis found in [11℄. Now for the full SSD tra
ker:ssdTra
ker :: Image -> STra
ker Residual Transform2ssdTra
ker image =mkTra
ker (grabTransform2 (sizeOf image)) (ssdStep image)Before we 
an use a tra
ker, we need a fun
tion that binds a tra
ker to a video sour
e andinitial lo
ation:runTra
ker :: Valued measure =>Video 
lk -> a -> Tra
ker measure a -> CEvent 
lk arunTra
ker video a0 tra
ker = ma wherelo
ations = delay a0 aStreamma = lift2 (,) lo
ations video ==> tra
keraStream = ma ==> valueOfThe delay fun
tion delays the values of an event stream by one 
lo
k 
y
le, returning an initialvalue, here a0, on the �rst 
lo
k ti
k.We 
an also run a tra
ker to 
reate a 
ontinuous behavior, Behavior b.runTra
kerB :: Valued measure =>Video 
lk -> measure a -> Tra
ker measure a -> CEvent 
lk arunTra
kerB video ma0 trk =stepper ma0 (runTra
ker video (valueOf ma0) trk)In this fun
tion, we need a measured initial state rather than an unmeasured one sin
e theinitial value of the behavior is measured.The 
lk in the type of runTra
ker is not of use in these small examples but is essential tothe integrity of multi-rate systems. For example, 
onsider an animation driven by two separatevideo sour
es:s
ene :: Video 
lk1 -> Video 
lk2 -> Pi
tureBThe type system ensures that the syn
hronous parts of the system, tra
kers 
lo
ked by eitherof the video sour
es, are used 
onsistently: no syn
hronous operation may 
ombine streamswith di�erent 
lo
k rates. By 
onverting the 
lo
ked streams to behaviors, we 
an use bothvideo sour
es to drive the resulting animation.3.3 More Complex Tra
kersConsider an animator that swit
hes between two di�erent images:s
ene :: Transform2B -> BoolB -> Pi
tureBs
ene pla
e whi
h = transform2 pla
e (ifB whi
h pi
ture1 pi
ture2)



A tra
ker for this s
ene must re
over both the lo
ation of the pi
ture, pla
e (a 2-D transfor-mation) and the boolean that sele
ts the pi
ture, whi
h. Previously, we inverted the transfor-mation for a �xed pi
ture. Here we must also invert the ifB fun
tion to determine the stateof the boolean. We also we wish to retain the same 
ompositional program style used by theanimator: our tra
king fun
tion should have a stru
ture similar to this s
ene fun
tion.The 
omposite tra
ker must wat
h for both images, pi
ture1 and pi
ture2 at all times.To determine whi
h image is present, we examine the residual produ
ed by SSD, a measureof the overall di�eren
e between the tra
ked image and the referen
e image. We formalize thisnotion of \best mat
h" using the Ord 
lass:instan
e Ord (Residual a) wherer1 > r2 = residual r1 < residual r2This states that smaller residuals are better than large ones.The bestOf fun
tion 
ombines a pair of tra
kers into a tra
ker that follows whi
hever pro-du
es a better measure. The tra
kers share a 
ommon lo
ation: in the original s
ene des
ription,there is only one transformation even though there are two pi
tures. The resulting values areaugmented by a boolean indi
ating whi
h of the two underlying tra
kers is best 
orrelated withthe present image. This value 
orresponds to the whi
h of the animator. The proje
tion of themeasured values onto the tra
ker output type are ignored: this 
ombines the internal tra
kerstates instead of the observed values seen from outside.bestOf :: (Fun
tor measure, Ord measure) =>Tra
ker measure a -> Tra
ker measure a -> Tra
ker measure (a, Bool)bestOf t1 t2 =\((lo
, _), v) -> max (fmap (\x -> (x, True)) (t1 (lo
, v)))(fmap (\x -> (x, False)) (t2 (lo
, v)))The stru
ture of bestOf is simple: the lo
ation (minus the additional boolean) is passed toboth tra
ker fun
tions. The results are 
ombined using max. The fmap fun
tions are used totag the lo
ations, exposing whi
h of the two images is presently on target.This same 
ode 
an be used on steppers as well as tra
kers; only the signature restri
tsbestOf to use tra
kers. This signature is also valid:bestOf :: (Fun
tor measure, Ord measure) =>Stepper measure observation a -> Stepper measure observation a ->Stepper measure observation (a, Bool)Thus steppers are 
omposable in the same manner as tra
kers. This is quite useful: by 
om-posing steppers rather than tra
kers we perform one observation instead of two. Thus the user
an de�ne a more eÆ
ient tra
ker when 
ombining tra
kers with a 
ommon observation.Higher-order fun
tions are a natural way to express this sort of abstra
tion in FVision.In C++ this sort of abstra
tion is more 
umbersome: 
losures (used to hold partially appliedfun
tions) must be de�ned and built manually.3.4 Adding Predi
tionWe may to improve tra
king a

ura
y by in
orporating better lo
ation predi
tion into thesystem. When tra
king a moving obje
t we 
an use a linear approximation of motion to morea

urately predi
t obje
t position in the next frame. A predi
tion fun
tion has this generalform:



type Predi
tor a = Behavior (Time -> a)That is, at a time t the predi
tor de�nes a fun
tion on times greater than t based on observationso

urring before t.Adding a predi
tor to runTra
ker is simple:runTra
kerPred :: Valued measure =>Video 
lk -> Tra
ker measure a -> Predi
tor a -> CEvent 
lk arunTra
kerPred video tra
ker p =withTimeE video `snapshot` p==> \((v,t), predi
tor) -> tra
ker (predi
tor t, v)The FRP primitive withTimeE adds an expli
it time to ea
h frame of the video. Then snapshot,another FRP primitive, samples the predi
tor at the 
urrent time and adds sampled values ofthe predi
tion fun
tion to the stream.This is quite di�erent from runTra
ker; there seems to be no 
onne
tion from output ofthe tra
ker ba
k to the input for the next step. The feedba
k loop is now outside the tra
ker,expressed by the predi
tor.Using predi
tion, a tra
king system looks like this:followImage :: Video 
lk -> Image -> Point2 -> CEvent 
lk Point2followImage video i p0 =let ssd = ssdTra
ker ip = interp2 p0 positionspositions = runTra
kerPred video p ssdinterp2 :: Point2 -> CEvent 
lk Point2 -> Predi
tor Point2The interp2 fun
tion implements simple linear predi
tion. The �rst argument is the initialpredi
tion seen before the initial interpolation point arrives. This initial value allows the p0passed to interp2 to serve as the initial observed lo
ation.4 Generalized Composite Tra
kersWe have already demonstrated one way to 
ompose tra
kers: bestOf. Here, we explore a numberof more general 
ompositions.4.1 Tra
kers in ParallelAn obje
t in an animation may 
ontain many tra
kable features. These features do not moveindependently: their lo
ations are related to ea
h other in some way. Consider the followingfun
tion for animating a square:s
ene :: Transform2B -> Pi
tureBs
ene t = transform2 t (polygon [(0,0), (0,1), (1,1), (1,0)℄)In the resulting animation, tra
kers 
an dis
ern four di�erent line segments - one for ea
h edgeof the square. The positions of these line segments are somewhat 
orrelated: opposite edgesremain in parallel after transformation. Thus we have a level of redundan
y in the tra
kablefeatures. Our goal is to exploit this redundan
y to make our tra
king system more robust byutilizing relationships among tra
ked obje
ts.



A 
omposite tra
ker 
ombines tra
kers for individual obje
t features into a tra
ker forthe overall obje
t. The relationship between the obje
t and its features is represented usinga pair of fun
tions: a proje
tion and an embedding. These fun
tions map between the modelstate (parameters de�ning the overall obje
t) and the states of the 
omponent tra
kers. Theproje
tion fun
tion maps a model state onto a set of 
omponent states and the embeddingfun
tion 
ombines the 
omponent states into a model state. This fun
tion pair is denoted bythe following type:type EPair a b = (a -> b, b -> a)We now build a 
omposite tra
ker that 
ombines the states of two 
omponent tra
kers. Inthis example, we de�ne a 
orner tra
ker using two 
omponent edge tra
kers. Edge tra
kers areimplemented using the following XVision stepper:edgeStepper :: Stepper Sharpness Image LineSegThe lo
ation maintained by the tra
ker is a line segment, denoted by the LineSeg type. Thistra
ker observes an Image and measures the quality of tra
king with the Sharpness type. ThisSharpness type has the same stru
ture as the Residual type but is mathemati
ally distin
t.To 
ombine two line segments into a 
orner, we �nd the interse
tion of the underlying lines(possibly outside the line segments) and then \nudge" the line segment to this point. This is
ru
ial sin
e the edge tra
kers tend to 
reep away from the 
orner. The underlying geometri
types are as follows:type LineSeg = (Point2, Ve
tor2)type Corner = (Point2, Ve
tor2, Ve
tor2)We for
e the length of the ve
tor de�ning a line segment to remain 
onstant during tra
king,allowing the use of a �xed size window on the underlying video stream. The proje
tion andembedding fun
tions are thus:
ornerToSegs :: Corner -> (LineSeg, LineSeg)
ornerToSegs (
orner, v1, v2) = ((
orner, v1), (
orner, v2))segsToCorner :: (LineSeg, LineSeg) -> CornersegsToCorner (seg1�(_,v1), seg2�(,v2)) = (segInterse
t seg1 seg2, v1, v2)Next we need a fun
tion to 
ombine two tra
kers using a proje
tion / embedding pair.join2 :: (Joinable measure, Fun
tor Measure) =>Tra
ker measure a -> Tra
ker measure b -> EPair (a,b) 
 -> Tra
ker measure 
join2 t1 t2 (fromTup, toTup) =\(
, v) -> let (a,b) = toTup 
ma = t1 (a,v)mb = t2 (b,v)in fmap fromTup (joinTup2 (ma, mb))The stru
ture of this fun
tion is the same as the bestOf fun
tion de�ned earlier. There isa signi�
ant addition though: the type 
lass Joinable. Here we 
reate a measured obje
tfrom more than one measured sub-obje
ts. Thus we must 
ombine the measurements of thesub-obje
ts to produ
e an overall measurement. The Joinable 
lass 
aptures this idea:
lass Joinable l wherejoinTup2 :: (l a,l b) -> l (a, b)joinTup3 :: (l a,l b,l 
) -> l (a, b, 
) -- and so oninstan
e Joinable Sharpness where ...



The joinTup2 fun
tion joins two measured values into a single one, 
ombining the measure-ments in some appropriate way. Joining measurements in a systemati
 manner is diÆ
ult; wewill avoid addressing this problem and omit instan
es of Joinable.Another way to implement joining is to allow the embedding fun
tion to see the underlyingmeasurements and return a potentially di�erent sort of measurement:join2m :: Tra
ker measure a -> Tra
ker measure b ->((measure a, measure b) -> measure2 
, 
 -> (a, b)) ->Tra
ker measure2 
This 
an be further generalized to allow all of the 
omponent tra
kers to use di�erent mea-surements. However, in most 
ases we 
an hide the details of joining measured values within atype 
lass and spare the user this extra 
omplexity.Now for the 
orner tra
ker:tra
kCorner :: Tra
ker Sharpness LineSeg -> Tra
ker Sharpness LineSeg ->Tra
ker Sharpness Cornertra
kCorner l1 l2 = join2 l1 l2 (segsToCorner, 
ornerToSegs)The join2 fun
tion is part of a family of joining fun
tions, ea
h integrating some spe
i�
number of underlying tra
kers.The 
orner tra
ker in
orporates \
rosstalk" between the states of two tra
kers but does nothave to deal with redundant information. We now return to tra
king a transformed square.Given four of these 
orner tra
kers, we now 
ompose them into a square tra
ker. The underlyingdatatype for a square is similar to the 
orner:type Square = (Point2, Point2, Point2)We need spe
ify only three points; the fourth is fun
tionally dependent on the other three.This type de�nes the image of a square under aÆne transformation: from this image we 
anre
onstru
t the transformation (lo
ation, rotation, s
aling, and shear). Our problem now isto map four tra
ked 
orners onto the three points de�ning the Square type. There are manypossibilities: for example, we 
ould throw out the point whose edges (the two ve
tors asso
iatedwith the 
orner) point the least towards the other 
orners, probably indi
ating that the 
ornertra
ker is lost. Here, we present a strategy based on the Sharpness measure 
oming from theunderlying tra
kers.The only signi�
ant di�eren
e between the previous example and this one is in the em-bedding fun
tion. We need to 
ombine measured values in the embedding; thus the tra
ker isde�ned using join4m. First, we need to lift a fun
tion into the domain of measured values.Using the Joinable 
lass we de�ne the following:jLift3 :: Joinable m => (a -> b -> 
 -> d) -> (m a -> m b -> m 
 -> m d)jLift3 f = \x y z -> let t = joinTup3 x y z infmap (\(x',y',z') -> f x' y' z') tUsing this, we build a fun
tion that generates a measured square from three measured points:mkSquare :: Sharpness Point2 -> Sharpness Point2 -> Sharpness Point2) ->Sharpness SquaremkSquare = jLift3 (\x y z -> (x,y,z))Now we generate all possible squares de�ned by the 
orners, ea
h using three of the fouredge points, and 
hoose the one with the best Sharpness measure using max:



bestSquare :: (Sharpness Point2, Sharpness Point2, Sharpness Point2,Sharpness Point2) -> Sharpness SquarebestSquare (v1, v2, v3, v4) =mkSquare v1 v2 v3 `max` mkSquare v1 v2 v4 `max`mkSquare v1 v3 v4 `max` mkSquare v2 v3 v4In summary, the family of join fun
tions 
apture the basi
 stru
ture of the parallel tra
ker
omposition. While this strategy o

asionally requires somewhat 
omplex embedding fun
tionsthis is exa
tly where the underlying domain is also 
omplex. Also, we 
an use overloading toexpress simple embedding strategies in a 
on
ise and readable way.4.2 Tra
kers in SeriesAnother basi
 strategy for 
ombining tra
kers is 
ombine slow but robust \wide �eld" tra
kerswith fast but fragile \narrow-�eld" tra
kers to yield an eÆ
ient robust tra
king network. Thestru
ture of this type of tra
ker does not 
orrespond to an animator sin
e this deals withperforman
e rather than expressiveness. Swit
hing between di�erent tra
kers is governed bymeasures that determine whether the tra
ker is \on feature" or not. Consider the followingthree tra
kers:{ A motion dete
tor that lo
ates areas of motion in the full frame.{ A 
olor blob tra
ker that follows regions of similarly 
olored pixels.{ A SSD tra
ker targeted at a spe
i�
 image.Our goal is to 
ombine these tra
kers to follow a spe
i�
 fa
e with an unknown initial lo
ation.The motion dete
tor �nds an area of movement. In this area, the blob tra
ker �nds a groupof 
esh-
olored pixels. Finally, this blob is mat
hed against the referen
e image. Ea
h of thesetra
kers suppresses the one immediately pro
eeding it: if the SSD tra
ker is \on feature" thereis no need for the other tra
kers to run.The type signatures of these tra
kers are relatively simple:motionDete
t :: Tra
ker SizeAndPla
e ()blob :: Color -> Tra
ker SizedAndOriented Point2ssd :: Image -> Tra
ker Residual Transform2The motionDete
t tra
ker is an example of a stateless tra
ker. That is, it does not 
arryinformation from frame to frame. Instead, it looks at the entire frame (a
tually a sparse 
overingof the entire frame) at ea
h time step. Sin
e there is no lo
ation to feed to the next step, allof the information 
oming out of motionDete
t is in the measure. For the blob tra
ker we getboth a size and an orientation, the axis that minimizes distan
e to the points.To 
ompose tra
kers in series, we use a pair of state proje
tion fun
tions. This is similar tothe embedding pairs used earlier ex
ept that there is an extra Maybe in the types:type SProje
tion m1 a1 m2 a2 = (m1 a1 -> Maybe s2, m2 a2 -> Maybe s1)These fun
tions lead up and down a ladder of tra
kers. At every step, if in the lower state wego \up" if the 
urrent tra
ker 
an produ
e an a

eptable state for the next higher tra
ker. Ifwe are in the higher state, we drop down if the 
urrent tra
ker is not in a suitable situation.The tra
ker types re
e
t the union of the underlying tra
ker set. To handle measures, weneed a higher order version of Either:



data EitherT t1 t2 a = LeftT (t1 a) | RightT (t2 a)instan
e (Valued t1, Valued t2) => Valued (EitherT t1 t2) wherevalueOf (LeftT x) = valueOf xvalueOf (RightT x) = valueOf xNow we 
ombine two tra
kers in series:tower :: Tra
ker m1 a1 -> Tra
ker m2 a2 -> SProje
tion m1 a1 m2 a2 ->Tra
ker (EitherT m1 m2) (Either a1 a2)tower low high (up, down) =\(a, v) -> 
ase a ofLeft a1 -> let ma1 = low (a1, v) in
ase up ma1 ofNothing -> LeftT (fmap Left ma1)Just a2 ->let ma2 = high (a2, v) in
ase down ma2 ofNothing -> RightT (fmap Right ma2)Just _ -> LeftT (fmap Left ma1)Right a2 -> let ma2 = high (a2, v) in
ase down ma2 ofNothing -> RightT (fmap Right ma2)Just a1 -> LeftT (fmap Left (low ma1))This 
alls ea
h of the sub-tra
kers no more than on
e per time step. The invariants hereare that we always attempt to 
limb higher if in the lower state and that we never return avalue in the higher state if the down fun
tion reje
ts it.Before using the tower fun
tion, we must 
onstru
t the state proje
tions. Without showinga
tual 
ode, they fun
tion as follows:{ Move from motionDete
t to blob whenever the size of the area in motion is greater thansome threshold (normally set fairly small). Use the 
enter of the area in motion at theinitial state in the blob tra
ker.{ Always try to move from blob to SSD. Use the blob size and orientation to 
reate the initialtransformation for the SSD tra
ker state.{ Drop from ssd to blob when the residual is greater than some threshold. Use the positionin the transformation an the initial state for blob.{ Drop from blob to motionDete
t when the group of 
esh-toned pixels is too small.The 
omposite tra
ker has the following stru
ture:fa
eTra
k :: Image ->Tra
ker (EitherT (EitherT SizeAndPla
e SizedAndOriented) Residual)(Either (Either () Point2) Transform2)fa
eTra
k image =tower (tower motionDete
t blob (upFromMD, downFromBlob))ssd onlyRight (upFromBlob, downFromSSD)whereupFromMD mt =if mArea mt > mdThreshold then Just mCenter mt else NothingdownFromBlob mt =



if blobSize mt < bThreshold then Just (blobCenter mt) else NothingupFromBlob mt =Just (translate2 (blobCenter mt)`
ompose2`rotate2 (blobOrientation mt))downFromSSD mt =if residual mt > ssdthresholdthen Just (origin2 `transform2` (valueOf mt))else NothingThe onlyRight fun
tion is needed be
ause the 
omposition of motion dete
tion and blobtra
king yields an Either type instead of a blob type. The onlyRight fun
tion (not shown)keeps the ssd tra
ker from pulling on the underlying tra
ker when it is looking for motionrather than at a blob.The output of this tra
ker would normally be �ltered to remove states from the \ba
kup"tra
kers. That is, the ultimate result of this tra
ker would probably be Behavior (MaybePoint2) rather that Behavior Point2. Thus when the 
omposite tra
ker is hunting for a fa
erather than on the fa
e this will be re
e
ted in the output of the tra
ker.5 Performan
ePrograms written in FVision tend to run at least 90% as fast as the native C++ 
ode, eventhough they are being run by a Haskell interpreter. This 
an be attributed to the fa
t that thebottlene
k in vision pro
essing programs is not in the high-level algorithms, as implementedin Haskell, but in the low-level image pro
essing algorithms written in C++. As a result, wehave found that FVision is a realisti
 alternative to C++ for prototyping or even deliveringappli
ations. While there are, no doubt, situations in whi
h the performan
e of Haskell 
odemay require migration to C++ for eÆ
ien
y, it is often the 
ase that the use of a de
larativelanguage to express high-level organization of a vision system has no appre
iable impa
t onperforman
e. Furthermore, the Haskell interpreter used in our experiment, Hugs, has a verysmall footprint and 
an be in
luded in an appli
ation without seriously in
reasing the overallsize of vision library.6 Related WorkWe are not aware of any other e�orts to 
reate a de
larative language for 
omputer vision,although there does exist a DSL for writing video devi
e drivers [12℄ whi
h is at a lower levelthan that this work.There are many on tools for building domain-spe
i�
 languages su
h as FVision froms
rat
h, but most relevant are previous e�orts of our own on embedded DSL's [5, 4℄ that usean existing de
larative language as the basi
 framework. General dis
ussions of the advantagesof programming with pure fun
tions are also quite numerous; two of parti
ular relevan
e toour work are one using fun
tional languages for rapid prototyping [3℄ and one that des
ribesthe power of higher-order fun
tions and lazy evaluation as the \glue" needed for modularprogramming[6℄.



7 Con
lusionsFVision has proven to be a powerful software engineering tool that in
reases produ
tivity and
exibility in the design of systems using visual tra
king. As 
ompared to XVision, the originalC++ library, FVision reveals the essential stru
ture of tra
king algorithms mu
h more 
learly.Some of the lessons learned in this proje
t in
lude:1. Visual tra
king o�ers fertile ground for the deployment of de
larative programming te
h-nology. The underlying problems are so diÆ
ult that the payo� in this domain is very high.FVision is signi�
antly better for prototyping tra
king-based appli
ations than the originalXVision system.2. The pro
ess 
reating FVision un
overed interesting insights that were not previously ap-parent even to original XVision developers. Working from the \bottom up" to developa new language for
es the domain spe
ialists to examine (or re-examine) the underlyingdomain for the right abstra
tions and interfa
es.3. The prin
ipal features of Haskell, a ri
h polymorphi
 type system and higher-order fun
-tions, were a signi�
ant advantage in FVision.4. FRP provides a ri
h framework for inter-operation among the various system 
ompo-nents. By 
asting tra
kers in terms of behaviors and events we were able to integratethem smoothly into other systems.This work was supported by NSF grant CCR-9706747 in experimental software systems.Referen
es[1℄ Conal Elliott and Paul Hudak. Fun
tional rea
tive animation. In International Conferen
e onFun
tional Programming, pages 163{173, June 1997.[2℄ G. D. Hager and P. N. Belhumeur. EÆ
ient region tra
king of with parametri
 models of illumi-nation and geometry. To appear in IEEE PAMI., O
tober 1998.[3℄ P. Henderson. Fun
tional programming, formal spep
i�
ation, and rapid prototyping. IEEETransa
tions on SW Engineering, SE-12(2):241{250, 1986.[4℄ P. Hudak. Building domain spe
i�
 embedded languages. ACM Computing Surveys,28A:(ele
troni
), De
ember 1996.[5℄ Paul Hudak. Modular domain spe
i�
 languages and tools. In Pro
eedings of Fifth InternationalConferen
e on Software Reuse, pages 134{142. IEEE Computer So
iety, June 1998.[6℄ J. Hughes. Why fun
tional programming matters. Te
hni
al Report 16, Programming Method-ology Group, Chalmers University of Te
hnology, November 1984.[7℄ Intel vision libraries. http://developer.intel.
om/resear
h/mrl/resear
h/
vlib/.[8℄ R.E. Kahn, M.J. Swain, P.N. Prokopowi
z, and R.J. Firby. Gesture re
ognition using Perseusar
hite
ture. In Pro
. IEEE Conf. Comp. Vision and Patt. Re
og., pages 734{741, 1996.[9℄ J.L. Mundy. The image understanding environment program. IEEE EXPERT, 10(6):64{73,De
ember 1995.[10℄ J. Peterson, P. Hudak, and C. Elliott. Lambda in motion: Controlling robots with haskell. InPro
eedings of PADL 99: Pra
ti
al Aspe
ts of De
larative Languages, pages 91{105, Jan 1999.[11℄ A. Reid, J. Peterson, P. Hudak, and G. Hager. Prototyping real-time vision systems. In Pro
eed-ings of ICSE 99: Intl. Conf. on Software Engineering, May 1999.[12℄ C. Consel S. Thibault, R. Marlet. A domain-spe
i�
 language for video devi
e drivers: Fromdesign to implementation. In Pro
eedings of the �rst 
onferen
e on Domain-Spe
i�
 Languages,pages 11{26. USENIX, O
tober 1997.[13℄ The Khoros Group. The Khoros Users Manual. The University of New Mexi
o, Albuquerque,NM, 1991.


