
Prototyping Real-Time Vision Systems:An Experiment in DSL DesignAlastair Reid, John Peterson, Greg Hager, Paul HudakYale UniversityP.O Box 208285New Haven, CT 06520(203) 432-1272freid-alastair, peterson-john, hager-greg, hudak-paulg@cs.yale.eduABSTRACTWe describe the transformation of XVision, a largelibrary of C++ code for real-time vision processing,into FVision (pronounced \�ssion"), a fully-featureddomain-speci�c language embedded in Haskell. The re-sulting prototype system substantiates the claims of in-creased modularity, e�ective code reuse, and rapid pro-totyping that characterize the DSL approach to systemdesign. It also illustrates the need for judicious inter-face design: relegating computationally expensive tasksto XVision (pre-existing C++ components), and leav-ing modular compositional tasks to FVision (Haskell).At the same time, our experience demonstrates howHaskell's advanced language features (speci�cally para-metric polymorphism, lazy evaluation, higher orderfunctions and automatic storage reclamation) permit arapid DSL design that is itself highly modular and easilymodi�ed. Overall, the resulting hybrid system exceededour expectations: visual tracking programs continue tospend most of their time executing low level image-processing code, while Haskell's advanced features allowus to quickly develop and test small prototype systemswithin a matter of a few days and to develop realisticapplications within a few weeks.KeywordsDomain-speci�c languages, Functional programming,Modularity, Code reuse, Computer vision, Haskell, In-teroperability.1 INTRODUCTIONReal-time computer vision is an area that is at a criti-cal juncture. Inexpensive cameras, digitizers, and high-performance video devices are now plentiful, and theprocessing power of most PC's and workstations hasreached the point where they can perform many imageprocessing functions which historically required special-ized hardware [7]. Software exploiting vision has not,

however, advanced at a comparable rate. We assertthat this is not due to a lack of algorithms or comput-ing power, but rather that little is yet known about thee�ective software abstractions and tools in this domain.There have been several attempts to build general-purpose image processing libraries [13, 17, 12]. Mosthave taken a traditional approach to system design us-ing a language such as C++ or Java is to build suitablelibraries, based on well designed interfaces, that cap-ture system functionality in a modular way. XVisionis such a library designed for a specialized subset ofreal-time computer vision tasks, in particular real-timetracking. The interfaces were designed with the usualtrade-o�s of performance and functionality, and manysuccessful vision applications1 have been built using it.Yet even with XVision, building an application is not al-ways easy. There is often a need for better compositionand abstraction facilities than exist in the current ver-sion. Furthermore, programmer productivity is a partic-ular problem: the best way of constructing a particularvision system is often found only by extensive prototyp-ing, combining elements from a variety of techniques.Thus, the traditional programming/debugging/testingcycle is quite long. It is further hampered by the factthat it is often di�cult to determine whether a givensystem malfunction is due to a programming error, or aconceptual problem with the underlying vision method-ology.This has led us to investigate Domain-speci�c lan-guages (DSLs) as a way of augmenting our existing li-braries with the composition and abstraction mecha-nisms needed in this �eld, and to give us stronger guar-antees about program correctness. With the DSL ap-proach, a special purpose language is developed to pro-vide just the right glue and abstraction mechanisms tomake composition and parameterization easy and nat-ural for the domain of interest.In this paper we describe our experiences designing andimplementing a DSL called FVision, using XVision as1Information on XVision can befound at http://www.cs.yale.edu/users/hager. To date, it hasbeen downloaded by over 200 sites.

the source of primitive operations. Although designingand implementing a DSL can itself be a di�cult task(language design is di�cult!), we avoided this problemby building FVision as an embedded DSL in the func-tional language Haskell. FVision programs are perfectlyvalid Haskell programs, but certain syntactic, static,and dynamic language features in Haskell give FVisionthe look and feel of an entirely new language.Just the process alone of designing FVision clari�edwhat the primitive operations should be, and resultedin a stream-lining of the XVision libraries to yield onlyits essence. However, in addition system o�ers severalpractical advantages including:� Flexibility. The ability to quickly experiment withand evaluate a large variety of solutions is a nec-essary process when building complex vision-basedsystems.� Modularity and abstraction. Programming ab-stractions are designed which are natural to thedomain, but which are not feasible in the currenttechnology of Java or C++ programming. The re-sulting clarity and compactness makes explicit var-ious ideas that are left implicit in most vision sys-tems, and facilitates the description of the underly-ing algorithms in a concise and semantically clearfashion.� E�ciency. The low-level operations which domi-nate execution time remain in the C++ domain.The FVision glue is often not a signi�cant part ofthe execution time.� Safety. The FVision type system ensures that mod-ules are composed reliably; we avoid using dynamictyping or other techniques that may fail at execu-tion time.This paper provides an overview of the FVision ap-proach to computer vision and compares it with XVi-sion. We address techniques used to embed a DSL inHaskell, including transforming monolithic C++ com-ponents into highly parameterized, purely functionalHaskell objects. To achieve this we rely critically onHaskell's parametric polymorphism, lazy evaluation,higher order functions, type classes, and garbage col-lection. Finally, we evaluate our approach, comparingprogram development using FVision to that using XVi-sion.Our work shows that constructing an e�ective DSL froman existing library is not a matter of simply \turning thecrank," but rather requires a signi�cant re-engineeringe�ort to achieve an e�ective domain-speci�c language.The proven bene�ts of the DSL, though, make this e�ortworthwhile.

2 THE DOMAIN: REAL-TIME VISIONXVision is an application and hardware-independent setof tools for visual feature tracking. Conceptually, XVi-sion can be viewed as the inverse of an animation sys-tem. Whereas in animation the goal is to quickly com-bine a set of graphics primitives into an \animator" thatproduces a desired video output stream, in XVision thegoal is to combine visual tracking primitives and mo-tion constraints into an an \observer" for a video inputstream.The existing XVision system libraries consist of approx-imately 27,000 lines of C++ code organized as shown inFigure 1. In particular, XVision de�nes generic inter-faces to hardware components (video sources and dis-plays), contains a large set of image processing tools,and de�nes a generic notion of a \trackable feature."Using this as a basis, XVision then de�nes several track-ers: specialized modules that recognize and follow spe-ci�c features in the video image. XVision includes track-ers that follow the position of a line, corner, an area ofcolor, and a variety of other similar image artifacts.The existing XVision system is organized around twoprogramming abstractions. The �rst abstraction is toview each feature as a state-based object and to de�netracking as a feedback process on the state of the fea-ture. The state, which usually consists of the locationof the feature plus some additional status information,consolidates and de�nes the information content of eachfeature as a single consistent entity. The notion of thefeedback loop is important as it captures the idea thatthe state of the feature at the current time is in fact asmall perturbation on what it was in the previous frame.Figure 2 illustrates this idea conceptually for the speci�ccase of an SSD (Sum of Squared Di�erence) tracking al-gorithm [6]. This algorithm tracks a region by attempt-ing to compute an image motion and/or deformation tomatch the current appearance of a target to a �xed ref-erence. The steps in the algorithm are: (1) Acquire anddeform an image based on the previous state, (2) com-pute the di�erence between this image and the referenceimage (the target), and (3) perform some arithmetic todetermine what perturbation to the current state pa-rameters would cause the (deformed) current image tobest match the reference.The second major abstraction in XVision is that ofcombining simple features to form more complex track-ing systems, which result in hierarchical constraint net-works. Figure 3 shows the feature network for a clownface animation using SSD trackers as its input. At theimage level, SSD tracking primitives operating on im-ages localize the eyes and mouth. For each eye andmouth, there are in fact two trackers, one for an openeye (or mouth) and one for a closed one. Status informa-2

FeatureGroup

Point-Type Line-Type

BlobSSDTarget

Realizations Tools

Typing

Line

TeeCrossCorner

GILine Matrix

RVector CVector

Image

Galileo
IndyCam

VideoCWindow

XWindow ITFG_101

Interfaces

BaseType

Scalable

BasicFeature

CompFeature

Tracking Figure 1: Software Layout.

model
inverse

acquire

∆position

position

-

reference
image

∫

image

initial
positionFigure 2: Figure of XVision feedback loop.

tion (essentially how well the reference image matchesthe current image) determine the status (open or closed)of their respective targets. Subsequent levels of the sys-tem combine this information into a consistent represen-tation of the pose and status of the face. The animation(frames of which are shown at the right of Figure 3) re-sults by \slaving" graphics drawing primitives to thestate of each tracking primitive.3 FROM XVISION TO FVISIONDespite the success of XVision as a substrate for appli-cation development, it was clear that the existing designwas often too inexible for the type of experimental pro-gramming involved in developing vision-based systems.Thus, our initial plan was to simply import XVisiontracking primitives as DSL components and to captureonly one of the XVision abstractions, hierarchical com-position, with the DSL. At this stage, we started toreplicate the XVision C++ object hierarchy in Haskell.This fell short in a number of ways:� The use of subclassing to extend existing classes isdi�cult to replicate outside of the C++ type sys-tem.� The original C++ code made extensive use of im-plicit object state. This led to code which couldnot take advantage of Haskell's purely functionalnature.� The C++ classes were very course-grained: thestructure of the underlying algorithms was hiddeninside the classes. This prevented experimentationwith the structure of the algorithms.3

Region Region

MultiRegion

Region Region

MultiRegion

EYE

Region Region

MultiRegion

EYE

EYES MOUTH

FACE

Figure 3: (Left) The tracking network used for face tracking as it is de�ned in XVision. (Right) The output of the\clown face" tracker. The upper row of images shows the raw video, and the lower row of images shows the graphicsproduced by the tracker overlaid onto the live video.� The C++ objects did not take advantage ofHaskell's polymorphic type system.It quickly became clear to us that we should insteadrecreate the basic structure of the XVision trackers di-rectly in Haskell instead of importing the entire trackeras a highly complex but indivisible black box. In oursecond attempt, we imported the non-tracking-speci�ccore components of XVision|namely the interfaces tothe outside world and the image processing tools|andrecreated in Haskell much of what had been completelyencapsulated, monolithic object de�nitions in C++. Inparticular, we could now easily capture the core abstrac-tion of a tracking cycle within the DSL, and therebyexperiment with new tracking algorithms by using pro-gramming abstractions even at that level.Another improvement in this second e�ort was to re-place the feedback loops previously hidden within thetrackers by an abstraction de�ning a sequential set ofvalues; i.e. a pipeline. This pipeline abstraction servedas a basis for the translation into a much more idiomaticand useful DSL version of the trackers.To illustrate the avor of our approach, we describebelow four key parts of the FVision system in detail:pipelines, the SSD stepper, the SSD tracker and theclown face demo described in the previous section. Al-though space limitations preclude the explanation of ev-ery syntactic detail, we feel that the examples in mostcases are self-explanatory, which is some indication ofthe naturalness of the DSL design.PipelinesPipelines provide a declarative view of the iterative loopsused in XVision. Speci�cally, they allow the de�nition

of iterative networks of computation based on pure func-tions that operate on pipelines. These are functions inthe mathematical sense of the word: they have no state;the result of function application does not depend onhow the function has been used in the past. Pure func-tions are an essential feature of FVision and o�er manyadvantages in a DSL framework:� System speci�cations, including those for computervision, are often described in mathematical terms.Translating those speci�cations into a DSL thatresembles the domain-speci�c mathematics is thusrelatively easy.� An equally important speci�cation method is owdiagrams, such as used in signal processing, butthese too are stateless. Any given ow diagram(even ones with loops) can be converted easily intoa set of mutually recursive FVision equations (in-deed, they are isomorphic).� Reasoning about, analyzing, and transforming pro-grams is generally easier for programs that do notrely on global state.� Understanding components based on pure func-tions is easier since their interface to the rest ofthe program is explicit rather than implicit.Furthermore, it is often the case that pipelines are con-ceptually in�nite in length: the Haskell substrate onwhich FVision is built easily supports this through lazyevaluation. In�nite pipelines are quite common in FVi-sion programming, but the user need not worry aboutproblems with termination.4

In FVision, the type of a \pipeline" containing valuesof type T is written Pipe T. For example, the typePipe Float denotes a pipeline of oating point num-bers and Pipe Image denotes a pipeline of images. Notethat the type constructor Pipe is polymorphic: that is,each pipeline can contain a di�erent type of value.A simple pipeline is written pipe [x,y,z] where x, y,and z are the elements in the pipeline. The elementsmust all have the same type, but otherwise may be im-ages, oating-point numbers, or whatever.FVision also supplies a rich set of functions for the con-struction, combination, and De-structuring of pipelines.Indeed, it is often the case that we have a function thatoperates on images or oating-point numbers, say, andwe wish to \lift" it to operate on pipelines of images oroating-point numbers. This is one place where poly-morphic higher-order functions really shine: instead ofrede�ning these functions to operate on the pipelines,we simply provide a family of polymorphic \lifting op-erators" to do this for us:pipe0 :: a -> Pipe apipe1 :: (a -> b) -> (Pipe a -> Pipe b)pipe2 :: (a -> b -> c) ->(Pipe a -> Pipe b -> Pipe c)...pipe0 takes a function of 0 arguments (aka a constant)and turns it into a \constant pipeline" which alwayscontains the same value; pipe1 takes a function of 1argument and turns it into a function which takes apipeline of arguments and returns a pipeline of results;pipe2 takes a function of 2 arguments and turns it intoa function which takes 2 pipelines of arguments and re-turns a pipeline of results; etc. For example, pipe2 (*)creates a version of the multiplication function (writtenas (*) in FVision) which operates on two pipelines ofnumbers, yielding a pipeline of products:(*) 2 3 ==> 6pipe2 (*) (pipe [2,3,4]) (pipe [3,4,5])==> pipe [6,12,20]pipe2 (*) (pipe0 2) (pipe [3,4,5])==> pipe [6,8,10]Pipelines may be split or joined using these functions:joinPipe :: Pipe a -> Pipe b -> Pipe (a, b)splitPipe :: Pipe (a, b) -> (Pipe a, Pipe b)For example:joinPipe (pipe [1,2,3]) (pipe [4,5,6])==> pipe [(1,4),(2,5),(3,6)]

splitPipe (pipe [(1,4),(2,5),(3,6)])==> (pipe [1,2,3], pipe [4,5,6])Another way to combine pipelines is to \multiplex"them: the multiplex function merges two pipes, usinga third pipe as a switch; in essence this is just the con-ditional if function \lifted" into the pipeline domain:multiplex ::Pipe Bool -> Pipe a -> Pipe a -> Pipe amultiplex = pipe3 condwherecond x y z = if x then y else zPipelines may also include interactions with the outsideworld. IO actions in FVision have type IO a for sometype a. The family of functions:pipeIO0 :: IO a -> Pipe apipeIO1 :: (a -> IO b) -> (Pipe a -> Pipe b)...yield pipelines which execute an IO action at each iter-ation of the pipeline. For example, acquire v sz posis an IO action which acquires an image of size sz atposition pos from a video device v; therefore pipeIO1(acquire v sz) is a function which acquires a sequenceof images (of �xed size) at a sequence of di�erent posi-tions in the video frame.Feedback loops often require a delay to hold a valuefrom one time step to the next. The delay functiondelays the values in the pipeline by one step, using agiven initial value for the �rst element in the pipe:delay :: a -> Pipe a -> Pipe aFeedback is how state is expressed in control loops, andthus this delay function is how we express stateful track-ers. For example, if the tracker applies a function stepto generate a new state from the old on each iteration,then the following function yields an iterated tracker:iterate ::(a -> a -> a) -> a -> Pipe a -> Pipe aiterate combine x0 xs =let p = delay x0 (pipe2 combine p xs)in pNote that the pipeline p is de�ned recursively; indeed,it is an example of an in�nite pipe.A particularly useful function built using iterate isintegral which computes the running total of the val-ues in its input pipe:5

integral :: (Num a) => a -> Pipe a -> Pipe aintegral x0 xs = iterate (+) x0 xsIn summary, the pipeline abstraction takes advantage ofmany Haskell features: polymorphic typing (in the Pipetype and the pipe<n> functions), higher-order func-tions (in the pipe<n> functions and iterate function)and lazy evaluation (in the multiplex, iterate andintegral functions).The SSD StepperThe SSD tracker follows a reference image as it movesin the video stream. In XVision, this tracker is de�nedusing a complex object structure containing many dif-ferent methods and internal state. The inner structureof SSD contains a loop that acquires a region within theimage, compares it with the reference image, and thenadjusts the apparent location of the image to accountfor movement that has taken place since the previousframe.In FVision, the SSD tracker is broken into two parts:the stepper and the tracker. The stepper is a pure func-tion whose FVision code is given in �gure 4. This codeis a direct transcription of the SSD algorithm into FVi-sion, and is readable to anyone familiar with the un-derlying algorithm, but is otherwise unimportant here.More important is the type signature, which declaresthat ssdStep takes two inputs, both images (the refer-ence image is the �rst parameter), and returns a delta(direction to move the \camera" to adjust the currentimage to match the reference image) and the residual(an estimate of the closeness of the match between thearea under the camera and the reference).The other component of SSD is the tracker. Once weimplemented the pipeline abstraction, it proved to betrivial to implement an SSD tracker, as shown in �g-ure 5. All we had to do was translate the ow diagram in�gure 2 from the graphical syntax into a textual syntaxusing the pipeline abstraction to represent the lines inthe diagram. Once again, the type signature reveals thebasic operation of ssdTrack: given a video stream, theinitial position of the tracked feature, and an image ofthe tracked feature, this function returns two pipelines:a sequence of points and a sequence of residuals.The cyclic dependencies in the tracking algorithm (asexpressed in the ow diagram) are directly reectedin the dependencies between the variables in the letexpression (in FVision, the de�nitions introduced in alet expression are mutually recursive). Lazy evalua-tion ensures that at each step evaluation will occur inthe proper order; i.e. by demand: �rst the image is ac-quired from the video device at the current position,then the SSD stepper computes a delta from the currentposition, and then this delta is added to the current po-

sition. The integral function serves the essential roleof delaying each computation by one step. That is, ituses the delta computed in the previous iteration tocompute the present value of the integral.More Complex TrackersTo show the compositional nature of FVision, and thusits ability to scale, a more complex tracker based onSSD is shown in �gure 6. This tracker is used as partof the clown face program mentioned earlier. It trackseye position using two di�erent reference images: anopen eye and a closed eye. The tracker compares thecurrent image with reference images for both an openand a closed eye, choosing to move the tracker usingthe delta associated with the image with the smallestresidual (error value) associated with it.This tracker fuses the results of two SSD sub-trackers,one for each image. Both trackers share a common state(the current position) and the image is continuouslycompared against both reference images, using the im-age most closely matching the current image to guidethe tracker. The result includes a pipeline of booleans,indicating which of the two images is currently beingtracked.We can further abstract this fusion by replacing theimage parameters with arbitrary trackers. Thus anytracker returning a delta and residual can be com-bined with a similar tracker to yield the compositetracker. Higher-order functions are a natural way toexpress this sort of abstraction in FVision. In C++this sort of abstraction is much more cumbersome: clo-sures (used to hold partially applied functions, such asssdStep openIm) must be de�ned and built manually.4 IMPLEMENTATION ISSUESWe hope that the previous section provides convincingevidence that FVision is a valuable DSL for computervision. In this section we address some of the practicalissues involved in designing and implementing FVisionas an embedded DSL in Haskell, and connecting it to alarge C++ library, XVision.The Domain VocabularyA key part of building a domain-speci�c language for vi-sion processing is providing the basic vocabulary neces-sary to express operations in the domain e�ciently andrecognizably. This consists of the primitive data typesthat domain experts want to use (principally, in ourcase, images and matrices) and a useful set of operationsto create, manipulate, and output values of those types.An essential tool in this task was our foreign functioninterface generator GreenCard [15] which made it easyto make C++ values and operations look like Haskellvalues and operations to the FVision programmer.Partly from habit and partly because we were antici-6

ssdStep :: Image -> Image -> (Delta,Double)ssdStep refIm r =let m = vectorsToMatrix [smoothDx refIm, smoothDy refIm]m_t = transpose mm' = inverse (m_t * m) * m_terror = imageToVector (compressXY (refIm - r))delta = m' `multVector` errorresidual = norm (error - m `multVector` delta)in (matrixToDelta delta, residual)Figure 4: The SSD stepperssdTrack :: Video -> Pos -> Image -> (Pipe Pos, Pipe Double)ssdTrack video initialPosition refIm =letimage = pipeIO1 (acquire video (sizeOf refIm)) posn(delta, residual) = splitPipe (pipe1 (ssdStep refIm) image)position = integral initialPosition deltain (position, residual)Figure 5: The SSD trackereye :: Video -> Pos -> Image -> Image -> (Pipe Pos, Pipe Bool)eye video initialPosition openIm closedIm =letimage = pipeIO1 (acquire video (sizeOf openIm)) posn(openDelta, openResidual) = splitPipe (pipe1 (ssdStep openIm) image)(closedDelta, closedResidual) = splitPipe (pipe1 (ssdStep closedIm) image)isOpen = pipe2 (<) openDelta closedDeltadelta = multiplex isOpen openDelta closedDeltaposn = integral initialPosition deltain (posn, isOpen) Figure 6: The eye trackerpating the pipeline abstraction, we wanted the domain-speci�c operations to be \pure" (free from, and unaf-fected by, side e�ects) and \lazy" (performed only ifand when required). Making the XVision library lookthis way required a little work:� Although many operations were already pure, C++programmers rarely document such facts. Thus,it became necessary to become familiar with theimplementation of as well as the interfaces to theunderlying image processing library.� Although it is easy to make pure operations lazy,it becomes almost impossible to reason about thelifetime of objects created by lazy operations, andthus manual storage management (using C++'s new

and delete) is infeasible. Fortunately, GreenCardprovides mechanisms that let Haskell's garbage col-lector take over the task of managing C++ objectsfrom the programmer: when a C++ object is re-turned to Haskell from a C++ function, it is addedto a list of objects managed by Haskell; and whenHaskell no longer requires an object it is managing,it calls delete to release the object.However, we did not try to make all operations pure,since some operations such as acquiring an image ordrawing an image on the screen are necessarily \im-pure": purity and laziness are merely design guidelines,and it is not helpful to be too dogmatic about them.We also discovered the need for many standard im-7

age/matrix operations which C++ programmers wouldjust code \inline." For example, one of our trackersneeds to compute an image mask by applying a thresh-old to an image. Though this is a common enough,general purpose operation often used in XVision appli-cations, XVision does not provide a function to do thisdirectly. One way to add this function would be to addoperations for manipulating individual pixels in an im-age and then code the function in Haskell; another wayto add this function would be to code it in C++ and addit to XVision. We chose the second way for two reasons:1. Crossing the boundary from Haskell into C++ isrelatively expensive (perhaps the cost of 10 or 20function calls in C++) so, for e�ciency reasons, wewanted to avoid this boundary crossing overheadon tight loops.2. Most of the new image processing functions wewanted to add were general purpose functions thatwe thought XVision ought to provide. It seemedthat the best way to avoid reinventing the wheelwas to make sure that everyone knew where thewheels were stored: in the XVision library.In this way the rigid separation between the domain-speci�c language and the domain-speci�c operationshelped clarify what operations we needed.The �nal factor that inuenced the design process grewfrom the dynamics of the project, a collaboration be-tween vision researchers and functional programmingresearchers. As na��ve users, the functional program-mers would try to do things that didn't make any sensein the computer vision world, and then complained tothe vision researchers when they obtained strange re-sults. For example, adding two color images doesn'tmake any sense since the pixels are represented by 32bit numbers: any overow in one color �eld \spills over"into another color �eld resulting in strangely colored im-ages. These problems prompted the development of amore precise type system for images that keeps color im-ages separate from gray-scale images. This type systemwas quickly prototyped in Haskell by giving functionstypes which were more restrictive than in C++. Havingfound that this type system catches many trivial errorsbut doesn't interfere with the programmer too much,we plan to express the type system directly in the C++class hierarchy.After our failed �rst attempt at importing XVision intoHaskell, one thing we did not try to do was to importXVision's high level abstractions into Haskell. Reasonsfor this include:� Since our goal was to redesign XVision's high levelabstractions, we did not want to buy into the ex-

isting abstractions for fear that they would makeit hard to invent more appropriate abstractions orwould make it harder to prototype new ideas.� The low level objects and operations have simple,well understood, obvious interfaces; whereas thehigh level objects and operations have much morecomplex interfaces. It just wasn't obvious what theessence of the high level objects should be.� The high level objects make more use of the C++class hierarchy. This could probably be mimickedin Haskell, but it wasn't obvious how. Nor was itobvious that the existing class hierarchy was theRight Design rather than just what was convenientto code in C++.Thus far, we have not missed XVision's high level ab-stractions.Virtual Cameras and DisplaysThe only reason we provide the pipeIO<n> functionsin the pipeline library is to let us acquire images fromthe video devices. These functions were a relatively lateaddition to the library: in earlier versions of FVision,opening a video device returned a pipe of images andssdTrack used a subImage operation to acquire a smallpart of that image. We found this version much simplerto reason about but were forced to abandon it becauseof severe performance problems.Our video device drivers run in the operating systemkernel and capture images into one of a small number ofmemory bu�ers shared with the (user mode) program.Since there are only a few shared memory bu�ers, wehave to copy the image into unshared memory beforeputting it into the pipe. Since the video device gener-ates 30 frames per second of 1.5Mbytes each, our earlyapplications spent most of their time copying memoryaround. This was particularly galling since a typical im-age processing application only examines a few regionsof perhaps 1kbyte each.Our solution was to add the pipeIO<n> functions andthe acquire functions so that we could view a singlephysical camera (represented by a pointer to a C++ ob-ject) as a number of separate virtual cameras each pro-viding a pipe of subimages of the full camera image.Similarly, we plan to add support to let us view eachphysical window on our desktop as a collection of virtualwindows each displaying relevant images and data frominside an FVision pipeline. This should be easy to dousing standard functional programming technology [5]and will solve a problem observed in both FVision andXVision: when a complex application starts, it typicallyopens a dozen small windows on the screen, each win-dow being randomly positioned on the screen according8

to the window manager's whim.5 ASSESSMENTIn many ways, the development of FVision has beenan experiment in software engineering and DSL designwhich has exceeded our expectations in terms of scope,performance, simplicity and usability. In the remainderof this section we discuss each of these issues in turn.PerformanceOne of the reasons we had initially chosen to interfaceto XVision at a high level was our belief that Haskellwould force us to pay too high a performance cost. Itturns out that this supposition was unfounded. In fact,we have found that programs written in FVision run atleast 90% as fast as the native C++ code, even thoughthey are (currently) being run interpreted! This (sur-prising!) discovery can be attributed to the fact that thebottleneck in vision processing programs is not in thehigh-level algorithms (which we prototyped in Haskell)but in the low-level image processing algorithms (whichwe imported from C++). As a result, we have foundthat FVision is in fact a realistic alternative to C++for prototyping or even delivering applications. Whilethere are, no doubt, situations in which the performanceof Haskell code may require migration to C++ for e�-ciency, it is often the case that the use of Haskell toexpress high-level organization of a vision system hasno appreciable impact on performance. Furthermore,the Haskell interpreter used in our experiment, Hugs,has a very small footprint and can be included in ap-plication without seriously increasing the overall size ofvision library.Choice of ScopeAs noted above, our original goals were to incorporatemuch of the \high-level" XVision code and to use it asa \black box." In retrospect, the initial attempts atdoing this required as much or more e�ort than mov-ing down a level and developing the complete XVisionsystem itself within the DSL. This can largely be at-tributed to the fact that the lower-level operations ofXVision not only �t well within the Haskell program-ming paradigm, but they also have simpler interfaceswhich were straightforward to incorporate.Programmer ProductivityEnlarging the scope of the DSL had an additional ad-vantage of allowing us to us to quickly explore the designspace for visual tracking as well as the implications ofthe design far faster than a C++ prototype would have.The Pipe library is a good example. A simplistic proto-type of pipes had been developed for XVision. It con-sisted of 2400 lines of C++ code written over severalmonths. The code was designed as an \add on" to theexisting XVision, although it was hoped that the use ofdata-ow processing would eventually impact the devel-

opment of other aspects of the system.Designing the Pipe library in FVision took only twodays of programmer time, and consists of just 200 linesof FVision code (excluding comments and blank lines).This can be attributed largely to the ability to describepipes as lazy lists, and the use of polymorphism to im-port basic image operations into pipes. Furthermore,we could now explore the implications of pipes for theremainder of the system (in particular SSD) completelywithin the DSL. As a result, we now have a much moreconcrete notion of how a redesigned XVision (based onthe pipe abstraction) would look.Flexibility and UseabilityOne of the problems we have found with XVision overthe past few years is that, although the software ab-stractions work reasonably well, the domain of real-timevision resists simple encapsulation. Most of the trackingmethods can in fact be \tuned" or modi�ed in a largevariety of ways. Making all of the possibilities availablevia a generic interface across the various modalities hasproven cumbersome (and was one reason why our initialprototype was more di�cult to construct).The DSL, in particular the development of pipes, hasnot only clari�ed much of the design of the system, butit has also made it easier to expose the inner workingsof individual algorithms. As a result, the compositionof new tracking systems is much simpler.Finally, the pipeline model is a good basis for parallelexecution on shared memory multiprocessors or even ona loosely coupled collection of processors.6 RELATED WORKWe are not aware of any other e�orts to create a special-purpose language for computer vision, although theredoes exist a DSL for writing video device drivers [16].That work is at a level quite a bit lower than that atwhich are working, but it is conceivable to use it as asubstrate for our own work.There are papers too numerous to mention on tools forbuilding DSL's from scratch, but most relevant is previ-ous e�orts of our own on embedded DSL's [11, 10]. Pre-vious examples of DSL's embedded in Haskell includeFran [3, 4], a language for functional reactive anima-tions, and ActiveHaskell [14], a DSL for scripting COMcomponents. These share much with FVision in theiruse of Haskell as a vehicle for expressing abstractionand modularity. General discussions of the advantagesof programming with pure functions are also quite nu-merous; two of particular relevance to our work are onethat describes the use of functional languages for rapidprototyping [9], and one that describes the power ofhigher-order functions and lazy evaluation as the \glue"needed for modular programming.9

Pipelines are very similar to the notion of streams in thefunctional programming community, about which anygood textbook on Haskell will address (e.g. [2]). The useof streams in signal processing and operating systemscontexts dates back many years [8]. Streams have alsobeen proposed as a basis for functional animation [1].7 CONCLUSIONSA domain-speci�c language is a powerful software engi-neering tool that increases productivity and exibility incomplex applications where ordinary program librariesare less e�ective. Creating a full-edged DSL from alibrary was more di�cult than expected but the resultswere well worth the investment. Lessons learned aboutDSL design from this project include:1. The level of interface between native code and theDSL is a crucial choice in developing an e�ectivesystem. Sometimes, this involves going deeper intothe domain than one might expect.2. The process of DSL design can uncover interestinginsights which may not be apparent even to domainspecialists. Working from the \bottom up" to de-velop a language forces both the domain specialistsand the DSL specialists to examine (or re-examine)the underlying domain for the right abstractionsand interfaces.3. Performance, even for soft real-time applications,can be acceptable provided care is taken in the in-terfaces.4. Haskell served well as a basis for the embeddedDSL. The principal features of Haskell, a rich poly-morphic type system and higher-order functions,were a signi�cant advantage in the DSL. Adding asmall Haskell interpreter to the system did not sig-ni�cantly increase its size or degrade performance.AcknowledgementsThis work was supported by NSF grant CCR-9706747in experimental software systems.REFERENCES[1] Kavi Arya. A functional animation starter-kit.Journal of Functional Programming, 4(1):1{18,January 1994.[2] R. Bird and P. Wadler. Introduction to FunctionalProgramming. Prentice Hall, New York, 1988.[3] Conal Elliott. Modeling interactive 3D and mul-timedia animation with an embedded language.In Proceedings of the �rst conference on Domain-Speci�c Languages. USENIX, October 1997.

[4] Conal Elliott and Paul Hudak. Functional reactiveanimation. In International Conference on Func-tional Programming, pages 163{173, June 1997.[5] Sigbjorn Finne and Simon Peyton Jones. Pictures:A simple structured graphics model. In GlasgowFunctional Programming Workshop, Ullapool, July1995.[6] G. D. Hager and P. N. Belhumeur. E�cient regiontracking of with parametric models of illuminationand geometry. To appear in IEEE PAMI., October1998.[7] G. D. Hager and K. Toyama. The \XVision" sys-tem: A general purpose substrate for real-time vi-sion applications. Comp. Vision, Image Under-standing., 69(1):23{27, January 1998.[8] P. Henderson. Purely functional operating systems.In Functional Programming and Its Applications:An Advanced Course, pages 177{192. CambridgeUniversity Press, 1982.[9] P. Henderson. Functional programming, formalspepci�cation, and rapid prototyping. IEEE Trans-actions on SW Engineering, SE-12(2):241{250,1986.[10] P. Hudak. Building domain speci�c em-bedded languages. ACM Computing Surveys,28A:(electronic), December 1996.[11] Paul Hudak. Modular domain speci�c languagesand tools. In Proceedings of Fifth InternationalConference on Software Reuse, pages 134{142.IEEE Computer Society, June 1998.[12] R.E. Kahn, M.J. Swain, P.N. Prokopowicz, andR.J. Firby. Gesture recognition using Perseus ar-chitecture. In Proc. IEEE Conf. Comp. Vision andPatt. Recog., pages 734{741, 1996.[13] J.L. Mundy. The image understanding environ-ment program. IEEE EXPERT, 10(6):64{73, De-cember 1995.[14] Simon Peyton-Jones, Erik Meijer, and Dan Leijen.Scripting COM components in haskell. In Proceed-ings of 5th International Conference on SoftwareReuse, pages 224{233. IEEE/ACM, 1998.[15] SL. Peyton Jones, T. Nordin, and A. Reid. Green-card: a foreign-language interface for haskell. InProc Haskell Workshop, Amsterdam, June 1997.[16] C. Consel S. Thibault, R. Marlet. A domain-speci�c language for video device drivers: From de-sign to implementation. In Proceedings of the �rstconference on Domain-Speci�c Languages, pages11{26. USENIX, October 1997.10

[17] The Khoros Group. The Khoros Users Manual.The University of New Mexico, Albuquerque, NM,1991.

11

