Prototyping Real-Time Vision Systems:
An Experiment in DSL Design

Alastair Reid, John Peterson, Greg Hager, Paul Hudak
Yale University
P.O Box 208285
New Haven, CT 06520
(203) 432-1272
{reid-alastair, peterson-john, hager-greg, hudak-paul}@cs.yale.edu

ABSTRACT

We describe the transformation of XVision, a large
library of C++ code for real-time vision processing,
into FVision (pronounced “fission”), a fully-featured
domain-specific language embedded in Haskell. The re-
sulting prototype system substantiates the claims of in-
creased modularity, effective code reuse, and rapid pro-
totyping that characterize the DSL approach to system
design. It also illustrates the need for judicious inter-
face design: relegating computationally expensive tasks
to XVision (pre-existing C++ components), and leav-
ing modular compositional tasks to FVision (Haskell).
At the same time, our experience demonstrates how
Haskell’s advanced language features (specifically para-
metric polymorphism, lazy evaluation, higher order
functions and automatic storage reclamation) permit a
rapid DSL design that is itself highly modular and easily
modified. Overall, the resulting hybrid system exceeded
our expectations: visual tracking programs continue to
spend most of their time executing low level image-
processing code, while Haskell’s advanced features allow
us to quickly develop and test small prototype systems
within a matter of a few days and to develop realistic
applications within a few weeks.

Keywords

Domain-specific languages, Functional programming,
Modularity, Code reuse, Computer vision, Haskell, In-
teroperability.

1 INTRODUCTION

Real-time computer vision is an area that is at a criti-
cal juncture. Inexpensive cameras, digitizers, and high-
performance video devices are now plentiful, and the
processing power of most PC’s and workstations has
reached the point where they can perform many image
processing functions which historically required special-
ized hardware [7]. Software exploiting vision has not,

however, advanced at a comparable rate. We assert
that this is not due to a lack of algorithms or comput-
ing power, but rather that little is yet known about the
effective software abstractions and tools in this domain.

There have been several attempts to build general-
purpose image processing libraries [13, 17, 12]. Most
have taken a traditional approach to system design us-
ing a language such as C++ or Java is to build suitable
libraries, based on well designed interfaces, that cap-
ture system functionality in a modular way. XVision
is such a library designed for a specialized subset of
real-time computer vision tasks, in particular real-time
tracking. The interfaces were designed with the usual
trade-offs of performance and functionality, and many
successful vision applications' have been built using it.
Yet even with XVision, building an application is not al-
ways easy. There is often a need for better composition
and abstraction facilities than exist in the current ver-
sion. Furthermore, programmer productivity is a partic-
ular problem: the best way of constructing a particular
vision system is often found only by extensive prototyp-
ing, combining elements from a variety of techniques.
Thus, the traditional programming/debugging/testing
cycle is quite long. It is further hampered by the fact
that it is often difficult to determine whether a given
system malfunction is due to a programming error, or a
conceptual problem with the underlying vision method-

ology.

This has led us to investigate Domain-specific lan-
guages (DSLs) as a way of augmenting our existing li-
braries with the composition and abstraction mecha-
nisms needed in this field, and to give us stronger guar-
antees about program correctness. With the DSL ap-
proach, a special purpose language is developed to pro-
vide just the right glue and abstraction mechanisms to
make composition and parameterization easy and nat-
ural for the domain of interest.

In this paper we describe our experiences designing and
implementing a DSL called F'Vision, using XVision as

Hnformation on XVision can be
found at http://www.cs.yale.edu/users/hager. To date, it has
been downloaded by over 200 sites.

the source of primitive operations. Although designing
and implementing a DSL can itself be a difficult task
(language design is difficult!), we avoided this problem
by building FVision as an embedded DSL in the func-
tional language Haskell. FVision programs are perfectly
valid Haskell programs, but certain syntactic, static,
and dynamic language features in Haskell give FVision
the look and feel of an entirely new language.

Just the process alone of designing FVision clarified
what the primitive operations should be, and resulted
in a stream-lining of the XVision libraries to yield only
its essence. However, in addition system offers several
practical advantages including:

e Flexibility. The ability to quickly experiment with
and evaluate a large variety of solutions is a nec-
essary process when building complex vision-based
systems.

e Modularity and abstraction. Programming ab-
stractions are designed which are natural to the
domain, but which are not feasible in the current
technology of Java or C++ programming. The re-
sulting clarity and compactness makes explicit var-
ious ideas that are left implicit in most vision sys-
tems, and facilitates the description of the underly-
ing algorithms in a concise and semantically clear
fashion.

e Efficiency. The low-level operations which domi-
nate execution time remain in the C4++ domain.
The FVision glue is often not a significant part of
the execution time.

e Safety. The FVision type system ensures that mod-
ules are composed reliably; we avoid using dynamic
typing or other techniques that may fail at execu-
tion time.

This paper provides an overview of the FVision ap-
proach to computer vision and compares it with XVi-
sion. We address techniques used to embed a DSL in
Haskell, including transforming monolithic C++ com-
ponents into highly parameterized, purely functional
Haskell objects. To achieve this we rely critically on
Haskell’s parametric polymorphism, lazy evaluation,
higher order functions, type classes, and garbage col-
lection. Finally, we evaluate our approach, comparing
program development using FVision to that using XVi-
sion.

Our work shows that constructing an effective DSL from
an existing library is not a matter of simply “turning the
crank,” but rather requires a significant re-engineering
effort to achieve an effective domain-specific language.
The proven benefits of the DSL, though, make this effort
worthwhile.

2 THE DOMAIN: REAL-TIME VISION
XVision is an application and hardware-independent set
of tools for visual feature tracking. Conceptually, XVi-
sion can be viewed as the inverse of an animation sys-
tem. Whereas in animation the goal is to quickly com-
bine a set of graphics primitives into an “animator” that
produces a desired video output stream, in XVision the
goal is to combine visual tracking primitives and mo-
tion constraints into an an “observer” for a video input
stream.

The existing XVision system libraries consist of approx-
imately 27,000 lines of C++ code organized as shown in
Figure 1. In particular, XVision defines generic inter-
faces to hardware components (video sources and dis-
plays), contains a large set of image processing tools,
and defines a generic notion of a “trackable feature.”
Using this as a basis, XVision then defines several track-
ers: specialized modules that recognize and follow spe-
cific features in the video image. XVision includes track-
ers that follow the position of a line, corner, an area of
color, and a variety of other similar image artifacts.

The existing XVision system is organized around two
programming abstractions. The first abstraction is to
view each feature as a state-based object and to define
tracking as a feedback process on the state of the fea-
ture. The state, which usually consists of the location
of the feature plus some additional status information,
consolidates and defines the information content of each
feature as a single consistent entity. The notion of the
feedback loop is important as it captures the idea that
the state of the feature at the current time is in fact a
small perturbation on what it was in the previous frame.

Figure 2 illustrates this idea conceptually for the specific
case of an SSD (Sum of Squared Difference) tracking al-
gorithm [6]. This algorithm tracks a region by attempt-
ing to compute an image motion and/or deformation to
match the current appearance of a target to a fixed ref-
erence. The steps in the algorithm are: (1) Acquire and
deform an image based on the previous state, (2) com-
pute the difference between this image and the reference
image (the target), and (3) perform some arithmetic to
determine what perturbation to the current state pa-
rameters would cause the (deformed) current image to
best match the reference.

The second major abstraction in XVision is that of
combining simple features to form more complex track-
ing systems, which result in hierarchical constraint net-
works. Figure 3 shows the feature network for a clown
face animation using SSD trackers as its input. At the
image level, SSD tracking primitives operating on im-
ages localize the eyes and mouth. For each eye and
mouth, there are in fact two trackers, one for an open
eye (or mouth) and one for a closed one. Status informa-

acquire

Readlizations Tools
Corner Cross Tee RVector CVector
GlLine Tgget SSD Blob Line Image Matrix
[Vi f A
1J V4
CompFeature \ Scalable Gdlileo
y Point-Type Line-Type IndyCam
XWindow ITFG_101
FeatureGroup
‘ T
BaseType CWindow Video
BasicFeature =
Tracking Typing Interfaces

Figure 1: Software Layout.

reference
image

A

J

image

position

Aposition

T

initial
position

Figure 2: Figure of XVision feedback loop.

A

model
inverse

tion (essentially how well the reference image matches
the current image) determine the status (open or closed)
of their respective targets. Subsequent levels of the sys-
tem combine this information into a consistent represen-
tation of the pose and status of the face. The animation
(frames of which are shown at the right of Figure 3) re-
sults by “slaving” graphics drawing primitives to the
state of each tracking primitive.

3 FROM XVISION TO FVISION

Despite the success of XVision as a substrate for appli-
cation development, it was clear that the existing design
was often too inflexible for the type of experimental pro-
gramming involved in developing vision-based systems.
Thus, our initial plan was to simply import XVision
tracking primitives as DSL components and to capture
only one of the XVision abstractions, hierarchical com-
position, with the DSL. At this stage, we started to
replicate the XVision C++ object hierarchy in Haskell.
This fell short in a number of ways:

e The use of subclassing to extend existing classes is
difficult to replicate outside of the C++ type sys-
tem.

e The original C++ code made extensive use of im-
plicit object state. This led to code which could
not take advantage of Haskell’s purely functional
nature.

e The C++ classes were very course-grained: the
structure of the underlying algorithms was hidden
inside the classes. This prevented experimentation
with the structure of the algorithms.

EYE EYE

i i MultiRegion
MultiRegion MultiRegion / \
/ \ / \ Region Region

Region Region Region Region

Figure 3: (Left) The tracking network used for face tracking as it is defined in XVision. (Right) The output of the
“clown face” tracker. The upper row of images shows the raw video, and the lower row of images shows the graphics

produced by the tracker overlaid onto the live video.

e The C++ objects did not take advantage of
Haskell’s polymorphic type system.

It quickly became clear to us that we should instead
recreate the basic structure of the XVision trackers di-
rectly in Haskell instead of importing the entire tracker
as a highly complex but indivisible black box. In our
second attempt, we imported the non-tracking-specific
core components of XVision—namely the interfaces to
the outside world and the image processing tools—and
recreated in Haskell much of what had been completely
encapsulated, monolithic object definitions in C++. In
particular, we could now easily capture the core abstrac-
tion of a tracking cycle within the DSL, and thereby
experiment with new tracking algorithms by using pro-
gramming abstractions even at that level.

Another improvement in this second effort was to re-
place the feedback loops previously hidden within the
trackers by an abstraction defining a sequential set of
values; i.e. a pipeline. This pipeline abstraction served
as a basis for the translation into a much more idiomatic
and useful DSL version of the trackers.

To illustrate the flavor of our approach, we describe
below four key parts of the FVision system in detail:
pipelines, the SSD stepper, the SSD tracker and the
clown face demo described in the previous section. Al-
though space limitations preclude the explanation of ev-
ery syntactic detail, we feel that the examples in most
cases are self-explanatory, which is some indication of
the naturalness of the DSL design.

Pipelines
Pipelines provide a declarative view of the iterative loops
used in XVision. Specifically, they allow the definition

of iterative networks of computation based on pure func-
tions that operate on pipelines. These are functions in
the mathematical sense of the word: they have no state;
the result of function application does not depend on
how the function has been used in the past. Pure func-
tions are an essential feature of FVision and offer many
advantages in a DSL framework:

e System specifications, including those for computer
vision, are often described in mathematical terms.
Translating those specifications into a DSL that
resembles the domain-specific mathematics is thus
relatively easy.

e An equally important specification method is flow
diagrams, such as used in signal processing, but
these too are stateless. Any given flow diagram
(even ones with loops) can be converted easily into
a set of mutually recursive FVision equations (in-
deed, they are isomorphic).

e Reasoning about, analyzing, and transforming pro-
grams is generally easier for programs that do not
rely on global state.

e Understanding components based on pure func-
tions is easier since their interface to the rest of
the program is explicit rather than implicit.

Furthermore, it is often the case that pipelines are con-
ceptually infinite in length: the Haskell substrate on
which FVision is built easily supports this through lazy
evaluation. Infinite pipelines are quite common in FVi-
sion programming, but the user need not worry about
problems with termination.

In FVision, the type of a “pipeline” containing values
of type T is written Pipe T. For example, the type
Pipe Float denotes a pipeline of floating point num-
bers and Pipe Image denotes a pipeline of images. Note
that the type constructor Pipe is polymorphic: that is,
each pipeline can contain a different type of value.

A simple pipeline is written pipe [x,y,z] where x, y,
and z are the elements in the pipeline. The elements
must all have the same type, but otherwise may be im-
ages, floating-point numbers, or whatever.

FVision also supplies a rich set of functions for the con-
struction, combination, and De-structuring of pipelines.
Indeed, it is often the case that we have a function that
operates on images or floating-point numbers, say, and
we wish to “lift” it to operate on pipelines of images or
floating-point numbers. This is one place where poly-
morphic higher-order functions really shine: instead of
redefining these functions to operate on the pipelines,
we simply provide a family of polymorphic “lifting op-
erators” to do this for us:

pipe0 :: a -> Pipe a
pipel (a > Db) -> (Pipe a -> Pipe b)
pipe2 :: (a -> b -> ¢) ->

(Pipe a -> Pipe b -> Pipe c)

pipe0 takes a function of 0 arguments (aka a constant)
and turns it into a “constant pipeline” which always
contains the same value; pipel takes a function of 1
argument and turns it into a function which takes a
pipeline of arguments and returns a pipeline of results;
pipe2 takes a function of 2 arguments and turns it into
a function which takes 2 pipelines of arguments and re-
turns a pipeline of results; etc. For example, pipe2 ()
creates a version of the multiplication function (written
as (*) in FVision) which operates on two pipelines of
numbers, yielding a pipeline of products:

(x) 23 ==> 6

pipe2 (*) (pipe [2,3,4]) (pipe [3,4,51)
==> pipe [6,12,20]

pipe2 (*) (pipe0 2) (pipe [3,4,5])
==> pipe [6,8,10]

Pipelines may be split or joined using these functions:

joinPipe :: Pipe a -> Pipe b -> Pipe (a, b)
splitPipe :: Pipe (a, b) -> (Pipe a, Pipe b)

For example:

joinPipe (pipe [1,2,3]) (pipe [4,5,6])
==> pipe [(1,4),(2,5),(3,6)]

splitPipe (pipe [(1,4),(2,5),(3,6)1)
==> (pipe [1,2,3], pipe [4,5,6]1)

Another way to combine pipelines is to “multiplex”
them: the multiplex function merges two pipes, using
a third pipe as a switch; in essence this is just the con-
ditional if function “lifted” into the pipeline domain:

multiplex ::
Pipe Bool -> Pipe a -> Pipe a -> Pipe a
multiplex = pipe3 cond
where
cond x y z = if x then y else z

Pipelines may also include interactions with the outside
world. IO actions in FVision have type I0 a for some
type a. The family of functions:

pipeI00 :: IO a -> Pipe a
pipeI0l :: (a -> I0 b) -> (Pipe a -> Pipe b)

yield pipelines which execute an IO action at each iter-
ation of the pipeline. For example, acquire v sz pos
is an IO action which acquires an image of size sz at
position pos from a video device v; therefore pipeI01
(acquire v sz) is a function which acquires a sequence
of images (of fixed size) at a sequence of different posi-
tions in the video frame.

Feedback loops often require a delay to hold a value
from one time step to the next. The delay function
delays the values in the pipeline by one step, using a
given initial value for the first element in the pipe:
delay :: a -> Pipe a -> Pipe a

Feedback is how state is expressed in control loops, and
thus this delay function is how we express stateful track-
ers. For example, if the tracker applies a function step

to generate a new state from the old on each iteration,
then the following function yields an iterated tracker:

iterate ::
(a > a -> a) -> a -> Pipe a -> Pipe a
iterate combine x0 xs =
let p = delay x0 (pipe2 combine p xs)
in p

Note that the pipeline p is defined recursively; indeed,
it is an example of an infinite pipe.

A particularly useful function built using iterate is
integral which computes the running total of the val-
ues in its input pipe:

integral :: (Num a) => a -> Pipe a -> Pipe a

integral x0 xs = iterate (+) x0 xs

In summary, the pipeline abstraction takes advantage of
many Haskell features: polymorphic typing (in the Pipe
type and the pipe<n> functions), higher-order func-
tions (in the pipe<n> functions and iterate function)
and lazy evaluation (in the multiplex, iterate and
integral functions).

The SSD Stepper

The SSD tracker follows a reference image as it moves
in the video stream. In XVision, this tracker is defined
using a complex object structure containing many dif-
ferent methods and internal state. The inner structure
of SSD contains a loop that acquires a region within the
image, compares it with the reference image, and then
adjusts the apparent location of the image to account
for movement that has taken place since the previous
frame.

In FVision, the SSD tracker is broken into two parts:
the stepper and the tracker. The stepper is a pure func-
tion whose FVision code is given in figure 4. This code
is a direct transcription of the SSD algorithm into FVi-
sion, and is readable to anyone familiar with the un-
derlying algorithm, but is otherwise unimportant here.
More important is the type signature, which declares
that ssdStep takes two inputs, both images (the refer-
ence image is the first parameter), and returns a delta
(direction to move the “camera” to adjust the current
image to match the reference image) and the residual
(an estimate of the closeness of the match between the
area under the camera and the reference).

The other component of SSD is the tracker. Once we
implemented the pipeline abstraction, it proved to be
trivial to implement an SSD tracker, as shown in fig-
ure 5. All we had to do was translate the flow diagram in
figure 2 from the graphical syntax into a textual syntax
using the pipeline abstraction to represent the lines in
the diagram. Once again, the type signature reveals the
basic operation of ssdTrack: given a video stream, the
initial position of the tracked feature, and an image of
the tracked feature, this function returns two pipelines:
a sequence of points and a sequence of residuals.

The cyclic dependencies in the tracking algorithm (as
expressed in the flow diagram) are directly reflected
in the dependencies between the variables in the let
expression (in FVision, the definitions introduced in a
let expression are mutually recursive). Lazy evalua-
tion ensures that at each step evaluation will occur in
the proper order; i.e. by demand: first the image is ac-
quired from the video device at the current position,
then the SSD stepper computes a delta from the current
position, and then this delta is added to the current po-

sition. The integral function serves the essential role
of delaying each computation by one step. That is, it
uses the delta computed in the previous iteration to
compute the present value of the integral.

More Complex Trackers

To show the compositional nature of FVision, and thus
its ability to scale, a more complex tracker based on
SSD is shown in figure 6. This tracker is used as part
of the clown face program mentioned earlier. It tracks
eye position using two different reference images: an
open eye and a closed eye. The tracker compares the
current image with reference images for both an open
and a closed eye, choosing to move the tracker using
the delta associated with the image with the smallest
residual (error value) associated with it.

This tracker fuses the results of two SSD sub-trackers,
one for each image. Both trackers share a common state
(the current position) and the image is continuously
compared against both reference images, using the im-
age most closely matching the current image to guide
the tracker. The result includes a pipeline of booleans,
indicating which of the two images is currently being
tracked.

We can further abstract this fusion by replacing the
image parameters with arbitrary trackers. Thus any
tracker returning a delta and residual can be com-
bined with a similar tracker to yield the composite
tracker. Higher-order functions are a natural way to
express this sort of abstraction in FVision. In C++
this sort of abstraction is much more cumbersome: clo-
sures (used to hold partially applied functions, such as
ssdStep openIm) must be defined and built manually.

4 IMPLEMENTATION ISSUES

We hope that the previous section provides convincing
evidence that FVision is a valuable DSL for computer
vision. In this section we address some of the practical
issues involved in designing and implementing FVision
as an embedded DSL in Haskell, and connecting it to a
large C++ library, XVision.

The Domain Vocabulary

A key part of building a domain-specific language for vi-
sion processing is providing the basic vocabulary neces-
sary to express operations in the domain efficiently and
recognizably. This consists of the primitive data types
that domain experts want to use (principally, in our
case, images and matrices) and a useful set of operations
to create, manipulate, and output values of those types.
An essential tool in this task was our foreign function
interface generator GreenCard [15] which made it easy
to make C++ values and operations look like Haskell
values and operations to the FVision programmer.

Partly from habit and partly because we were antici-

ssdStep :: Image -> Image -> (Delta,Double)
ssdStep refIm r =
let m = vectorsToMatrix [smoothDx refIm, smoothDy refIm]
m_t = transpose m
m’ = inverse (m_t * m) * m_t
error = imageToVector (compressXY (refIm - r))
delta =m’ ‘multVector‘ error
residual = norm (error - m ‘multVector‘ delta)
in (matrixToDelta delta, residual)

Figure 4: The SSD stepper

ssdTrack ::

let
image
(delta, residual)

in (position, residual)

Video -> Pos -> Image -> (Pipe Pos, Pipe Double)
ssdTrack video initialPosition refIm =

pipel0l (acquire video (sizeOf refIm)) posn
splitPipe (pipel (ssdStep refIm) image)
position = integral initialPosition delta

Figure 5: The SSD tracker

eye :: Video -> Pos -> Image -> Image -> (Pipe Pos, Pipe Bool)
eye video initialPosition openlIm closedIm =
let
image = pipel01 (acquire video (size0Of openIm)) posn
(openDelta, openResidual) = splitPipe (pipel (ssdStep openIm) image)
(closedDelta, closedResidual) = splitPipe (pipel (ssdStep closedIm) image)
isOpen = pipe2 (<) openDelta closedDelta
delta = multiplex isOpen openDelta closedDelta
posn = integral initialPosition delta
in (posn, isOpen)

Figure 6: The eye tracker

pating the pipeline abstraction, we wanted the domain-
specific operations to be “pure” (free from, and unaf-
fected by, side effects) and “lazy” (performed only if
and when required). Making the XVision library look
this way required a little work:

e Although many operations were already pure, C++
programmers rarely document such facts. Thus,
it became necessary to become familiar with the
implementation of as well as the interfaces to the
underlying image processing library.

e Although it is easy to make pure operations lazy,
it becomes almost impossible to reason about the
lifetime of objects created by lazy operations, and
thus manual storage management (using C++’s new

and delete) is infeasible. Fortunately, GreenCard
provides mechanisms that let Haskell’s garbage col-
lector take over the task of managing C++ objects
from the programmer: when a C++ object is re-
turned to Haskell from a C++ function, it is added
to a list of objects managed by Haskell; and when
Haskell no longer requires an object it is managing,
it calls delete to release the object.

However, we did not try to make all operations pure,
since some operations such as acquiring an image or
drawing an image on the screen are necessarily “im-
pure”: purity and laziness are merely design guidelines,

and it is not helpful to be too dogmatic about them.

We also discovered the need for many standard im-

age/matrix operations which C4++ programmers would
just code “inline.” For example, one of our trackers
needs to compute an image mask by applying a thresh-
old to an image. Though this is a common enough,
general purpose operation often used in XVision appli-
cations, XVision does not provide a function to do this
directly. One way to add this function would be to add
operations for manipulating individual pixels in an im-
age and then code the function in Haskell; another way
to add this function would be to code it in C++ and add
it to XVision. We chose the second way for two reasons:

1. Crossing the boundary from Haskell into C4++ is
relatively expensive (perhaps the cost of 10 or 20
function calls in C++) so, for efficiency reasons, we
wanted to avoid this boundary crossing overhead
on tight loops.

2. Most of the new image processing functions we
wanted to add were general purpose functions that
we thought XVision ought to provide. It seemed
that the best way to avoid reinventing the wheel
was to make sure that everyone knew where the
wheels were stored: in the XVision library.

In this way the rigid separation between the domain-
specific language and the domain-specific operations
helped clarify what operations we needed.

The final factor that influenced the design process grew
from the dynamics of the project, a collaboration be-
tween vision researchers and functional programming
researchers. As naive users, the functional program-
mers would try to do things that didn’t make any sense
in the computer vision world, and then complained to
the vision researchers when they obtained strange re-
sults. For example, adding two color images doesn’t
make any sense since the pixels are represented by 32
bit numbers: any overflow in one color field “spills over”
into another color field resulting in strangely colored im-
ages. These problems prompted the development of a
more precise type system for images that keeps color im-
ages separate from gray-scale images. This type system
was quickly prototyped in Haskell by giving functions
types which were more restrictive than in C++. Having
found that this type system catches many trivial errors
but doesn’t interfere with the programmer too much,
we plan to express the type system directly in the C++
class hierarchy.

After our failed first attempt at importing XVision into
Haskell, one thing we did not try to do was to import
XVision’s high level abstractions into Haskell. Reasons
for this include:

e Since our goal was to redesign XVision’s high level
abstractions, we did not want to buy into the ex-

isting abstractions for fear that they would make
it hard to invent more appropriate abstractions or
would make it harder to prototype new ideas.

e The low level objects and operations have simple,
well understood, obvious interfaces; whereas the
high level objects and operations have much more
complex interfaces. It just wasn’t obvious what the
essence of the high level objects should be.

e The high level objects make more use of the C++
class hierarchy. This could probably be mimicked
in Haskell, but it wasn’t obvious how. Nor was it
obvious that the existing class hierarchy was the
Right Design rather than just what was convenient
to code in C++.

Thus far, we have not missed XVision’s high level ab-
stractions.

Virtual Cameras and Displays

The only reason we provide the pipeI0<n> functions
in the pipeline library is to let us acquire images from
the video devices. These functions were a relatively late
addition to the library: in earlier versions of FVision,
opening a video device returned a pipe of images and
ssdTrack used a subImage operation to acquire a small
part of that image. We found this version much simpler
to reason about but were forced to abandon it because
of severe performance problems.

Our video device drivers run in the operating system
kernel and capture images into one of a small number of
memory buffers shared with the (user mode) program.
Since there are only a few shared memory buffers, we
have to copy the image into unshared memory before
putting it into the pipe. Since the video device gener-
ates 30 frames per second of 1.5Mbytes each, our early
applications spent most of their time copying memory
around. This was particularly galling since a typical im-
age processing application only examines a few regions
of perhaps 1kbyte each.

Our solution was to add the pipeIO<n> functions and
the acquire functions so that we could view a single
physical camera (represented by a pointer to a C++ ob-
ject) as a number of separate virtual cameras each pro-
viding a pipe of subimages of the full camera image.

Similarly, we plan to add support to let us view each
physical window on our desktop as a collection of virtual
windows each displaying relevant images and data from
inside an FVision pipeline. This should be easy to do
using standard functional programming technology [5]
and will solve a problem observed in both FVision and
XVision: when a complex application starts, it typically
opens a dozen small windows on the screen, each win-
dow being randomly positioned on the screen according

to the window manager’s whim.

5 ASSESSMENT

In many ways, the development of FVision has been
an experiment in software engineering and DSL design
which has exceeded our expectations in terms of scope,
performance, simplicity and usability. In the remainder
of this section we discuss each of these issues in turn.

Performance

One of the reasons we had initially chosen to interface
to XVision at a high level was our belief that Haskell
would force us to pay too high a performance cost. It
turns out that this supposition was unfounded. In fact,
we have found that programs written in FVision run at
least 90% as fast as the native C++ code, even though
they are (currently) being run interpreted! This (sur-
prising!) discovery can be attributed to the fact that the
bottleneck in vision processing programs is not in the
high-level algorithms (which we prototyped in Haskell)
but in the low-level image processing algorithms (which
we imported from C4++). As a result, we have found
that FVision is in fact a realistic alternative to C4++
for prototyping or even delivering applications. While
there are, no doubt, situations in which the performance
of Haskell code may require migration to C++ for effi-
ciency, it is often the case that the use of Haskell to
express high-level organization of a vision system has
no appreciable impact on performance. Furthermore,
the Haskell interpreter used in our experiment, Hugs,
has a very small footprint and can be included in ap-
plication without seriously increasing the overall size of
vision library.

Choice of Scope

As noted above, our original goals were to incorporate
much of the “high-level” XVision code and to use it as
a “black box.” In retrospect, the initial attempts at
doing this required as much or more effort than mov-
ing down a level and developing the complete XVision
system itself within the DSL. This can largely be at-
tributed to the fact that the lower-level operations of
XVision not only fit well within the Haskell program-
ming paradigm, but they also have simpler interfaces
which were straightforward to incorporate.

Programmer Productivity

Enlarging the scope of the DSL had an additional ad-
vantage of allowing us to us to quickly explore the design
space for visual tracking as well as the implications of
the design far faster than a C++ prototype would have.

The Pipe library is a good example. A simplistic proto-
type of pipes had been developed for XVision. It con-
sisted of 2400 lines of C++ code written over several
months. The code was designed as an “add on” to the
existing XVision, although it was hoped that the use of
data-flow processing would eventually impact the devel-

opment of other aspects of the system.

Designing the Pipe library in FVision took only two
days of programmer time, and consists of just 200 lines
of FVision code (excluding comments and blank lines).
This can be attributed largely to the ability to describe
pipes as lazy lists, and the use of polymorphism to im-
port basic image operations into pipes. Furthermore,
we could now explore the implications of pipes for the
remainder of the system (in particular SSD) completely
within the DSL. As a result, we now have a much more
concrete notion of how a redesigned XVision (based on
the pipe abstraction) would look.

Flexibility and Useability

One of the problems we have found with XVision over
the past few years is that, although the software ab-
stractions work reasonably well, the domain of real-time
vision resists simple encapsulation. Most of the tracking
methods can in fact be “tuned” or modified in a large
variety of ways. Making all of the possibilities available
via a generic interface across the various modalities has
proven cumbersome (and was one reason why our initial
prototype was more difficult to construct).

The DSL, in particular the development of pipes, has
not only clarified much of the design of the system, but
it has also made it easier to expose the inner workings
of individual algorithms. As a result, the composition
of new tracking systems is much simpler.

Finally, the pipeline model is a good basis for parallel
execution on shared memory multiprocessors or even on
a loosely coupled collection of processors.

6 RELATED WORK

We are not aware of any other efforts to create a special-
purpose language for computer vision, although there
does exist a DSL for writing video device drivers [16].
That work is at a level quite a bit lower than that at
which are working, but it is conceivable to use it as a
substrate for our own work.

There are papers too numerous to mention on tools for
building DSL’s from scratch, but most relevant is previ-
ous efforts of our own on embedded DSL’s [11, 10]. Pre-
vious examples of DSL’s embedded in Haskell include
Fran [3, 4], a language for functional reactive anima-
tions, and ActiveHaskell [14], a DSL for scripting COM
components. These share much with FVision in their
use of Haskell as a vehicle for expressing abstraction
and modularity. General discussions of the advantages
of programming with pure functions are also quite nu-
merous; two of particular relevance to our work are one
that describes the use of functional languages for rapid
prototyping [9], and one that describes the power of
higher-order functions and lazy evaluation as the “glue”
needed for modular programming.

Pipelines are very similar to the notion of streams in the
functional programming community, about which any
good textbook on Haskell will address (e.g. [2]). The use
of streams in signal processing and operating systems
contexts dates back many years [8]. Streams have also
been proposed as a basis for functional animation [1].

7 CONCLUSIONS

A domain-specific language is a powerful software engi-
neering tool that increases productivity and flexibility in
complex applications where ordinary program libraries
are less effective. Creating a full-fledged DSL from a
library was more difficult than expected but the results
were well worth the investment. Lessons learned about
DSL design from this project include:

1. The level of interface between native code and the
DSL is a crucial choice in developing an effective
system. Sometimes, this involves going deeper into
the domain than one might expect.

2. The process of DSL design can uncover interesting
insights which may not be apparent even to domain
specialists. Working from the “bottom up” to de-
velop a language forces both the domain specialists
and the DSL specialists to examine (or re-examine)
the underlying domain for the right abstractions
and interfaces.

3. Performance, even for soft real-time applications,
can be acceptable provided care is taken in the in-
terfaces.

4. Haskell served well as a basis for the embedded
DSL. The principal features of Haskell, a rich poly-
morphic type system and higher-order functions,
were a significant advantage in the DSL. Adding a
small Haskell interpreter to the system did not sig-
nificantly increase its size or degrade performance.

Acknowledgements
This work was supported by NSF grant CCR-9706747

in experimental software systems.

REFERENCES

[1] Kavi Arya. A functional animation starter-kit.
Journal of Functional Programming, 4(1):1-18,
January 1994.

[2] R. Bird and P. Wadler. Introduction to Functional
Programming. Prentice Hall, New York, 1988.

[3] Conal Elliott. Modeling interactive 3D and mul-
timedia animation with an embedded language.

In Proceedings of the first conference on Domain-
Specific Languages. USENIX, October 1997.

10

[4] Conal Elliott and Paul Hudak. Functional reactive
animation. In International Conference on Func-
tional Programming, pages 163 173, June 1997.

[5] Sigbjorn Finne and Simon Peyton Jones. Pictures:
A simple structured graphics model. In Glasgow
Functional Programming Workshop, Ullapool, July

1995.

G. D. Hager and P. N. Belhumeur. Efficient region
tracking of with parametric models of illumination
and geometry. To appear in IEEE PAMI., October
1998.

G. D. Hager and K. Toyama. The “XVision” sys-
tem: A general purpose substrate for real-time vi-
sion applications. Comp. Vision, Image Under-
standing., 69(1):23-27, January 1998.

P. Henderson. Purely functional operating systems.
In Functional Programming and Its Applications:
An Advanced Course, pages 177-192. Cambridge
University Press, 1982.

P. Henderson. Functional programming, formal
spepcification, and rapid prototyping. IEEE Trans-
actions on SW Engineering, SE-12(2):241-250,
1986.

P. Hudak. Building domain specific em-
bedded languages. ACM Computing Surveys,
28A:(electronic), December 1996.

Paul Hudak. Modular domain specific languages
and tools. In Proceedings of Fifth International
Conference on Software Reuse, pages 134-142.
IEEE Computer Society, June 1998.

R.E. Kahn, M.J. Swain, P.N. Prokopowicz, and
R.J. Firby. Gesture recognition using Perseus ar-
chitecture. In Proc. IEEE Conf. Comp. Vision and
Patt. Recog., pages 734 741, 1996.

J.L. Mundy. The image understanding environ-
ment program. [EEE EXPERT, 10(6):64-73, De-
cember 1995.

Simon Peyton-Jones, Erik Meijer, and Dan Leijen.
Scripting COM components in haskell. In Proceed-
ings of 5th International Conference on Software

Reuse, pages 224 233. IEEE/ACM, 1998.

SL. Peyton Jones, T. Nordin, and A. Reid. Green-
card: a foreign-language interface for haskell. In
Proc Haskell Workshop, Amsterdam, June 1997.

C. Consel S. Thibault, R. Marlet. A domain-
specific language for video device drivers: From de-
sign to implementation. In Proceedings of the first
conference on Domain-Specific Languages, pages

11-26. USENIX, October 1997.

[17] The Khoros Group. The Khoros Users Manual.
The University of New Mexico, Albuquerque, NM,
1991.

11

