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Abstract—Processor specifications are of critical importance
for verifying programs, compilers, operating systems/hypervisors,
and, of course, for verifying microprocessors themselves. But to
be useful, the scope of these specifications must be sufficient for
the task, the specification must be applicable to processors of
interest and the specification must be trustworthy.

This paper describes a 5 year project to change ARM’s exist-
ing architecture specification process so that machine-readable,
executable specifications can be automatically generated from the
same materials used to generate ARM’s conventional architecture
documentation. We have developed executable specifications of
both ARM’s A-class and M-class processor architectures that
are complete enough and trustworthy enough that we have
used them to formally verify ARM processors using bounded
model checking. In particular, our specifications include the
semantics of the most security sensitive parts of the processor: the
memory and register protection mechanisms and the exception
mechanisms that trigger transitions between different modes.
Most importantly, we have applied a diverse set of methods
including ARM’s internal processor test suites to improve our
trust in the specification using many other expressions of the
architectural specification such as ARM’s simulators, testsuites
and processors to defend against common-mode failure. In the
process, we have also found bugs in all those artifacts: testing
specifications is very much a two-way street.

While there have been previous specifications of ARM pro-
cessors, their scope has excluded the system architecture, their
applicability has excluded newer processors and M-class, and
their trustworthiness has not been established as thoroughly.

Our focus has been on enabling the formal verification of
ARM processors but, recognising the value of this specification
for verifying software, we are currently preparing a public release
of the machine-readable specification.

I. INTRODUCTION

Recent years have seen an increasing focus on verification of
machine-code programs [1], compilers [2], operating system
kernels [3], hypervisors [4] and processors [5]. These activ-
ities rely on having correct specifications of the meaning of
machine-code and one of the first steps in such verification
efforts is creating a specification of the computer architecture
of interest.

Three key properties of a processor specification are its
scope, its applicability and its trustworthiness.

The scope of a specification is the set of features that
one can reason about. For example, a certified compiler
such as CompCert [2] only requires a specification of those
instructions that the compiler could generate. But in order to
reason about arbitrary user-mode binaries, one would need
a specification of the entire instruction set. And to reason

about Operating System code, the scope of the specification
is dramatically increased and includes a specification of in-
structions for changing execution mode (e.g., entering/leaving
supervisor mode), interrupt handling mechanisms, page faults,
mechanisms for changing memory protection, etc. To date,
all formal specifications of the ARM architecture have been
targetted at reasoning about user-mode programs and have not
included a specification of these system-level features.

The applicability of a processor specification is whether the
specification applies to the target processor. Most changes to
architecture specifications are backward compatible extensions
and so most proofs about code for one architecture version are
valid when executing that code on a processor implementing
a later architecture version. But architecture revisions also
remove instructions, add restrictions or change functionality
so proofs based on the ARMv6 specification (1996) or the
ARMv7-A specification (2007) are not necessarily sound
for ARMv8-A (2013). This is especially true for ARM’s
Microcontroller architecture which has a completely different
exception model from ARM’s mainstream architecture.

The trustworthiness of a processor specification is whether
the specification can be trusted to reflect the behaviour of all
processors implementing the specification. The ARMv7 HOL
specification of Fox and Myreen [1] is noteworthy for the de-
gree of testing performed: systematically testing all user-mode,
integer instructions against three actual processors. This is a
critical step and must be repeated against as many expressions
of the architecture as possible (processors, implementations,
testsuites, etc.) and must be used to test the full scope of the
specification.

The effort required to create a specification increases with
the desired scope, applicability and trustworthiness of the
specification. Worse, since ARM regularly releases extensions
and corrections to the architecture, the challenge of retaining
applicability to current processors is more of a continuous pro-
cess rather than a one-off sprint. Our solution to this problem
has been to change ARM’s existing architecture specification
process so that machine-readable, executable specifications
can be automatically generated from the same materials used
to generate conventional documentation.

This paper describes our work over the last 5 years on trans-
forming the ARM processor specifications from documents
intended for human consumption into trustworthy machine-
readable specifications.

Creating this specification required understanding and cod-
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ifying the precise meaning of various notations used in the
documentation; inferring the lexical, syntax, type rules and
semantics from examples in the documentation; making the
specification conform to these rules; filling gaps in the original
specification; and creating a frontend and several backends to
allow the specification to be executed.

Using ARM’s specifications directly addresses the issues
of scope and applicability but the resulting formal part of
the specification is just one part of the whole specification
and, like any large specification, may contain bugs wrt the
informal parts of the specification or with the architects’
informal intent. To address the issue of trust, we have used
a diverse set of testing methodologies to compare against
as many different expressions of the specification as possi-
ble: testsuites, simulators and processors. We have simulated
billions of instructions and used bounded model checking
to compare the RTL of five ARM processors currently in
development against the specification [6]. Bugs found in the
process have been fixed in the master copy of the specification
from which ARM’s architecture specification documents are
generated. This process has the effect of distilling more of
the architectural intent into the formal part of ARM’s official
specification.

The structure of this paper is summarized in Figure 1 which
gives an overview of the specifications, tools, verification IP,
and testing we created or used in the process of this project.
Section II gives a brief overview of the structure and content
of the different ARM Architectures. Sections III and IV
describe the steps we took to convert ARM’s existing informal
documentation into machine-readable, executable, trustworthy
specifications of the ARM-v8A and ARM-v8-M architectures;
Section V discusses related work; and Section VI concludes.

This paper deals with the Instruction Set Architecture (ISA),
Exceptions, Memory Protection/Translation and Security. It
does not deal with multiprocessor features and, in particular,
the Memory Ordering Model [3], [7], [8]. And it does not deal
with debug or performance monitoring features.

II. ARM SPECIFICATIONS

ARM Architecture specifications have two main sections: Ap-
plication Level Architecture and System Level Architecture.

The Application Level Architecture (aka the Instruction
Set Architecture or ISA) consists of all instructions and all
user-mode registers (the integer and floating point register
files, condition flags, stack pointer and program counter). ISA
specifications consist of instruction encodings, matching rules
to match encodings to opcodes and the semantics of instruction
execution.

The System Level Architecture defines Memory Translation
and Protection, Synchronous Exceptions (e.g., page faults
and system traps), Asynchronous Exceptions (e.g., interrupts),
Security (e.g., register banking and access protection of reg-
isters), and System Registers and System Operations (which
are used to control and read the status of all the system-
level features), In other words, the facilities needed to support
Operating Systems, Hypervisors and Secure Monitors.

The ARM architecture comprises three main processor
classes: “A-class” processors support Applications (character-
ized by having an operating system that uses address transla-
tion to provide virtual memory); “R-class” processors support
Real-Time systems that cannot handle the timing variability
associated with virtual memory and use memory protection
instead; and “M-class” microcontrollers are optimized for
programming interrupt-driven systems in the C language. The
A-class specification consists of two parts: AArch32 supports
32-bit programs and is generally backward compatible with
ARM’s traditional architecture; and AArch64 which supports
64-bit programs.

The A- and R-class architecture [9] share the same ISA and
exception model but have different memory protection/trans-
lation models. The M-class architecture [10] has a subset of
the A-class ISA but has significant differences from A-class
at both the Application Level and System Level.

A. ISA Differences between A/R- and M-class

The M-class architecture only supports the Thumb R© (aka
“T32”) variable-length instruction encodings whereas the A/R-
class architecture also supports the A32 and A64 encodings.

Much more significantly though, the specifications identify
certain instruction encodings as UNPREDICTABLE for which
a processor is free to do anything that can be achieved at the
current or a lower level of privilege using instructions that
are not UNPREDICTABLE and that does not halt or hang the
processor or parts of the system.

In the M-class architecture, many of the instruction encod-
ings which access the stack pointer (R13) or the program
counter (R15) are UNPREDICTABLE but the same encodings
are well defined in the A/R-class architecture. This is a
significant difference — it would be unsound to use the
A-class specification to reason about Thumb machine code
intended for an M-class processor.

More broadly, when performing formal verification, it is
essential to ensure that the specification version being used
matches the architecture version supported on the target pro-
cessor because later specifications are almost but not entirely
backward compatible. This is obvious but easily overlooked.

B. System Differences between A-, R- and M-class

The R/M-class architectures support memory protection based
on setting attributes and protection for a small number of
contiguous memory regions whereas the A-class architecture
supports both address translation and memory protection for
a large number of memory pages.

M-class processors automatically save the callee-save reg-
isters on the stack on taking an exception whereas A/R pro-
cessors require registers to be saved in software. This allows
M-class processors to respond more quickly to interrupts and
also allows exception handlers to be written in plain C with
no assembly language or special calling conventions. This
has a large impact on the architecture specification since it
introduces many corner cases associated with the effect of
triggering memory faults while saving or restoring registers.
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Fig. 1: Overview of specifications, tools, verification IP and testing. This flow was applied separately to the v8-A specification
and to the v8-M specification. Section numbers indicate which section primarily discusses each aspect.

M-class processors have an orthogonal set of 8 execu-
tion states composed of combinations of three properties:
privileged/unprivileged, secure/non-secure and handler/thread.
A/R-class processors have a more traditional set of nested
execution states EL0, EL1 (supervisor), EL2 (virtualization)
and EL3 (secure monitor) with increasing levels of privilege
at each level.

A consequence of these differences is that the M-class
system specification is completely different from the A/R-class
system specification.

III. EXECUTABLE SPECIFICATIONS

We faced five major challenges in turning ARM’s
documentation-based specification into an executable
specification: (1) Scale: ARM specifications are very
large; (2) Informality: ARM specifications are written in
“pseudocode”; (3) Gaps: key parts of the specification only
existed in natural language specification; (4) System Register
Specifications; and (5) Implementation Defined Behaviour.

A. ARM Specifications Are Large

One of the main challenges in creating machine-readable
specifications of the ARM Architecture is the scale of the
problem. The A and M-class architectures together consist
of over 6,000 pages of documentation, 1,570 instruction en-
codings, over 50,000 lines of pseudocode, over 4,500 system
register fields grouped into 772 system register, and 112
system operations. To this specification that ARM publishes,
we added an additional 8,190 lines of support pseudocode
which were required to make the execution executable. (A
more detailed breakdown of the size of the specification is
given in table 2a and table 2b.)

B. Pseudocode

A secondary challenge in creating a machine readable spec-
ification was that the bulk of the specification is written in
what the ARM documentation refers to as “pseudocode”.
For example, the T32 CMP instruction is specified with the

following encoding diagram and pseudocode in the v8-A
architecture. (The same instruction is UNPREDICTABLE in
v8-M if “m == 13”.)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2 type Rm

CONDITIONAL
n = UInt(Rn); m = UInt(Rm);
(shift t, shift n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE;
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), ’1’);
PSTATE.<N,Z,C,V> = nzcv;

Fortunately for us, this “pseudocode” was fairly complete
and it appeared possible to implement a conventional parser,
typechecker and interpreter for pseudocode (a tool we call “Ar-
chitecture Explorer”). Through a process of experimentation,
discussion and negotiation with the architecture designers, we
were able to infer consistent indentation rules, precedence
rules, a type-system and semantics and to clean up the specifi-
cations to use the resulting simpler, more consistent language
that is now internally referred to as ARM Specification Lan-
guage (ASL).

At a high level, ASL is an indentation-sensitive, imperative,
strongly typed, first-order language with dependent types (to
reason about length of bit vectors), type inference, exceptions,
enumerations, arrays, records, no pointers. Unusually for an
otherwise simple language, ASL allows overloading of array
syntax for function calls: the use of “R[m]” and “R[n]”
on lines 4 and 5 of the example above are both function
calls. This syntactic sugar provides an initial impression that
registers (and memory) are simple arrays, while allowing one
to dig deeper and understand register banking, virtual memory,
etc. We refer readers to Fox and Myreen [1] or to ARM’s
specification [9, Appendix G] for a more detailed description
of ASL.

The initial cleanup of syntax and type errors resulted in
changes to approximately 12% of the lines of code but,



ARMv8-A ARMv8-M
AArch32 AArch64 Shared Support Spec Support

Instrs. 18318 5757 4998
Integer 23 352 246
Float Point 1179 953 76
Exceptions 1474 1611 235 781
Registers 310 446 398 2011 461
Memory 1584 1169 393 369 481
Debug 675 537 1103
Instr. Fetch 199 367 128
Test Monitor - - - 1323 - 1893
Misc. 1647 1137 2984 1678 415 1434

Total 24315 10657 5489 3200 9898 4990

(a) Size of ASL specification (lines of code)

v8-A v8-M

Registers 586 186
Fields 3951 622

Constant 985 177
Reserved 940 208
Impl. Defined 70 10
Passive 1888 165
Active 68 62

Operations 112 10

(b) Size of System Register specification

Fig. 2: Size of ARM Specifications

since ARM specifications are extensively reviewed before
release, these were all fairly low-grade errors: they confused
automatic tools but few were likely to confuse a human reader.
The process of cleaning up the specification also uncovered
a number of instances of “implement by comment” where
comments were used instead of pseudocode: these parts had to
be rewritten before the code could be executed. These simple
comments often turned out to be surprisingly complicated and
the process of writing code would identify corner cases or the
need to modify other parts of the specification.

C. Gaps in the specification

Some parts of the architecture were only defined in English
and the information to implement them was typically scattered
throughout the documentation. An example is the specification
of the “top-level” step of fetching an instruction, decoding
and executing it, and incrementing the program counter was
not written in ASL and the description was scattered across
the specification document. The exact specification of this
step took some time to develop as it includes details like
dealing with page faults that occur during instruction fetch, not
incrementing the PC after a branch instruction or exception,
conditional execution of instructions and its interaction with
UNDEFINED encodings, and testing for pending interrupts.

D. System Register Specification

The major negative surprise of this project was how hard it
was to specify something as apparently simple as a register.

The A-class architecture specification comprises 586 system
registers which are used to read the status of and to control
the behaviour of the processor (such as whether the MMU or
cache is turned on) and to perform operations such as flushing
the cache or invalidating the TLB. The main properties of these
registers are captured in the architecture specification by tables
specifying the opcode to access each register, its name, size
(32/64-bits) whether it is read-only and the reset value of the
register. For each register, there is a description consisting of a
register diagram which identifies the name and extent of any

used bits in the register. And each such field of contiguous
bits has a natural language specification.

The challenge in creating a machine-readable specification
for system registers is that different fields within the register
can behave in several different ways. After some experimen-
tation we settled on identifying five major types of field.
i) Constant fields have an architecture defined value and cannot
be changed.
ii) Reserved fields are not used in the current version of
the architecture but could be assigned a meaning in future
versions of the architecture. These are like constant fields but,
to maintain forward compatibility, software should not assume
that the field is constant and should avoid changing the value
of that field.
iii) Implementation Defined fields have an implementation
defined value that programs may read to determine whether
the processor has some ISA or system level feature.
iv) Passive fields behave like a global variable and simply store
the value last written to the field. The value written often
has a significant effect such as enabling address translation
but this effect is completely captured by the ASL functions
implementing the affected behaviour.
v) Active fields do not behave like a global variable: reading
the field may not see the last value written to the field; writing
to the field may be disabled by the value of some other register;
etc. These are used for everything from system timer registers
(which decrement every cycle) to allowing a hypervisor to
intercept interrupts targetted at the guest operating system.

Fields that are Constant, Reserved, Implementation Defined
or Passive are easy to describe completely and are described in
a simple table-based format but 68 of the fields of system reg-
isters are Active fields whose behaviour can only be captured
by writing ASL getter and setter functions to implement the
natural language specification. The process of implementing
registers with active fields proved to be quite error prone as
the behaviour of the fields was rather subtle.

It was also hard to find the correct design point. We chose
to identify just 5 classes of field but we could have identified
further common patterns within the Active class. For example,



there are some pairs of registers that have complementary ef-
fects such as enabling and disabling exceptions. If this pattern
is a one-off, it is probably best described as an Active register
but if the pattern occurs in several pairs of registers, then the
argument for recognizing it as a new class of field becomes
stronger. As the number of tools using the system register
specification grows, we expect that we will identify a number
of patterns that are useful to recognise explicitly because that
enables tools to make more use of the specification without
having to embed the ASL parser/interpreter.

One significant aspect of system registers not yet captured
in the executable specification is what Lustig et al. [8] call a
memory transistency model which captures places where the
specification allows reordering of writes to system registers
with respect to other instructions and requires insertion of
instruction barrier instructions (ISB) to restrict.

E. Implementation Defined Behaviour

The specification allows for some implementation defined
behaviour such as whether a particular feature is implemented
or the number of memory protection regions supported. This
behaviour is often specified by “stub functions” returning
booleans or an enumerated value and with a natural language
definition. We had to implement these stub functions before
we could execute the specification. In most cases, these feature
test functions could be implemented by testing a corresponding
implementation defined field.

F. Executable Specification

After creating all the tooling, bugfixes, etc. described above,
there were some further steps required to make the specifi-
cation executable so that it could be tested. We had to add
additional infrastructure such as generating decode trees for a
set of encodings to identify which instruction to execute; ELF
readers to load test programs into memory; a physical memory
implementation which allocates pages of memory on demand.
and breakpoint and trace facilities to use when debugging.

We also introduced a continuous integration flow where ev-
ery specification change runs regression tests. This was critical
for confining new code to the ASL subset of pseudocode.

G. Machine Readable Specifications

Our primary goal in doing the above was not to make the
specification executable but, rather, to improve its quality so
that the specification is useful to many potential users. To
support these uses, we generate a variety of machine-readable
outputs.
i) IP-XACT is a standard XML-based format for describing
registers in a chip [11]. It is used by debuggers needing to
view or change the value of a register.
ii) Callgraph summaries are convenient summaries of the
function calls and variable accesses performed by each in-
struction and function in the specification. One use of these
summaries is in generating a summary of the list of exceptions
that an instruction can raise — for inclusion in documentation.
iii) Abstract Syntax Trees are a complete dump of Architecture
Explorer’s internal representation after typechecking. We have

provided these to the University of Cambridge REMS group
who are in the process of transforming them into a form
suitable for formal verification of machine-code programs.

IV. TRUSTWORTHY SPECIFICATIONS

ARM spends considerable effort on reviewing specifications. It
also benefits from feedback from users of the specifications:
processor designers, verification engineers, implementers of
simulators, compiler writers, etc. Nevertheless, the sheer size
of the specification made it unlikely that the specifications are
bug-free. This was especially true of the relatively fresh v8-M
specification since it had not yet had the benefit of feedback
from users of the specification.

This Section describes the steps we have taken to test the v8-
A and v8-M specifications using testsuites, random instruction
sequences, information flow analysis and using bounded model
checking to compare against the Verilog implementation of
processors. One of the recurring themes of this project was
that this testing process improves the specification and our
trust in the specification — but it also improves the tools,
verification IP, etc. that is being used to test the specification
which creates a virtuous cycle of improving any other uses of
those tools and artifacts.

A. Using ARM Processor testsuites

ARM performs extensive testing of its processors and simu-
lators (it is estimated that more than 80% of the engineering
effort of designing a new processor is spent on testing the
processor). One part of this testing process is use of ARM’s
Architecture Validition Suite (AVS) which consists of pro-
grams that test the architectural conformance of individual
instructions, memory protection, exception handling and all
other aspects of the architecture. Excluding multiprocessor and
debug tests, the AArch64 AVS consists of over 11,000 test pro-
grams with a combined runtime of over 2.5 billion instructions;
the M-class AVS consists of over 3,500 test programs with a
combined runtime of over 250 million instructions. Almost all
of these tests were considered to be free of assumptions about
instruction timing or implementation defined behaviour. (ARM
has a large number of other tests which were less appropriate
to run because they are aimed at testing micro-architectural
performance optimizations in particular processors.)

Using ARM’s official Architecture Validition Suite has some
significant advantages: the suite is very thorough, checks many
corner cases, and has good control and data coverage of
the architecture; the suite is self-checking: each test prints
“PASSED” or “FAILED” when it runs; and, since the purpose
of the tests is to test processors, it was possible to compare the
behaviour against actual processors for additional confidence.
The primary disadvantage of using the AVS was that the
tests are “bare metal” tests that exercise the System Level
Architecture and require a large test harness to run.

As we started using Architecture Explorer to develop new
architecture extensions (such as the new security features of
v8-M), we encountered a chicken-and-egg problem: the AVS



is extended with new tests only once the architecture specifi-
cation is available but we were still writing the specification.
Worse, v8-M is not entirely backward compatible with the
previous architecture version so we could not even run the old
tests. This led us to use a hybrid approach: we temporarily
created a modified specification supporting the old memory
protection design so that we could use the old tests; and we
created a temporary test suite to test the new security features
of v8-M (see Section IV-C) before the official test suite was
developed. Once updated AVS tests became available, we
switched to using the official test suite.

1) Programmable Monitor and Stimulus Generator: Part
of the development of every ARM processor is creating a test
harness which allows the AVS to be run. This test harness
consists of a programmable monitor and stimulus generator
that allows programs to monitor their own behaviour at a very
low-level. The test monitor design dates back to the earliest
days of ARM and each successive architecture extension
typically adds new test features.

The monitor consists of 177 memory mapped registers of
which 45 are Active. The main features of the test monitor are
(i) Console FIFO for writing ASCII text to log file.
(ii) Memory attribute monitors which record the attributes of
memory accesses in a given range of addresses. This allows
test programs to verify that the MMU/MPU is correctly asso-
ciating attributes such as cacheability of an access with each
address. These checkers are repeated for each bus interface.
(iii) Memory abort generators to trigger a bus fault response
if the processor accesses a specified range of addresses.
(iv) Interrupt generators to test triggering, prioritization and
nesting of interrupts.
(v) Reset generators to schedule resets.

2) Optimizing the simulator: During this testing process,
we slowly built our capability from being able to execute
one instruction to being able to execute most usermode in-
structions, to being able to execute entire tests and then entire
testsuites. As we did so, we were increasingly limited by the
performance of our interpreter which initially ran at a few
hundred instructions per second. Over time, we have optimized
this in a variety of ways increasing performance to 5kHz (v8-
A) and 50kHz (v8-M). The main optimizations applied are: (i)
Memoizing a few critical functions associated with the current
configuration or execution state (this has not been yet been
applied to v8-A); (ii) Implementing a few critical arithmetic
functions as builtin primitives even if they can be defined
in ASL; (iii) Creating a C++ code generator and runtime
(including ELF reader, etc.).

3) Testing the specification: One of the issues found while
testing the specification initially manifested as a failing AVS
test. On closer inspection, we found a mismatch between
the English text and the pseudocode and that the test had
originally followed the pseudocode and ARM’s reference
simulator followed the English text. This mismatch had been
“fixed” by changing the test to match the simulator. Consulting
the architects, we learned that the pseudocode was correct and

the English text was wrong and so the English text, the test
and the simulator were fixed to match the architects’ intent.

The pass rate of our specifications on the AVS is summa-
rized in Table I. We have achieved a 100% pass rate for the
v8-A and v8-M ISA tests and for the v8-M System tests. For
the v8-A System tests, there remain some failing tests in areas
related to interprocessing (switching between 32-bit and 64-
bit modes) and prioritization of multiple exceptions within the
same instruction. These results omit debug and multiprocessor
tests which are just under 50% of the total number of tests.

ARMv8-A ARMv8-M

ISA
Integer 100% 100%
Floating Point 100% 100%
SIMD 100% 100%

System
Exceptions 100% 100%
Memory 99% 100%
Interprocessing 98% -

TABLE I: Pass rate for AVS testsuite

4) Testing the testsuite: Testing the specification with a
testsuite has the side-effect of testing the testsuite. We found
two classes of problems in the process of diagnosing test
failures. The first is that a test may depend on some property
not guaranteed by the architecture but which had been true in
every tested processor. For example, a test might check that a
reserved field of a register is always zero and will then fail on
later versions of the architecture. Secondly, many of the M-
class AVS tests depended on UNPREDICTABLE behaviour
but this had not been observed before because, in practice,
UNPREDICTABLE behaviour can depend on the particular
pipeline state when an instruction runs.

To improve testing of the AVS, we extended the interpreter
to collect line coverage information as it executes. A rare
example of a coverage hole we found was in a floating point
test which tested with inputs that produced the result +0.0 but
did not test with inputs that produced the result −0.0 — with
the result that one of the branches associated with rounding
was not being exercised. The AVS development team now
routinely measure the architectural coverage of testsuites.

B. Random Instruction Sequence Testing

Random Instruction Sequence (RIS) testing is a complemen-
tary technique to the directed testing of using hand-written
tests based on generating random sequences of instructions.
ARM’s RIS tool [12] uses templates that specify the desired
distribution of instructions, the likelihood of reuse of a given
register, etc. Automatically generating random tests is different
from hand-writing tests because it requires an accurate simula-
tor to define the correct behaviour of a test. Also, because RIS
generates random sequences of instructions, it is necessary to
run the same test on multiple systems (processors, simulators
or the specification) and compare execution traces. So at least
two models are needed to develop RIS tests.



We were able to use the executable specification as part
of the process for testing new RIS tests by extending the
simulator to generate a trace and extending the existing trace
comparision script to accept those traces. This process was
especially useful for the v8-M specification because the v8-M
support in ARM’s reference simulator was new and had not
been fully debugged. Using RIS to test the simulator against
the executable specification was an effective way of testing
the RIS tests, the simulator and the specification.

This process was able to uncover subtle errors in the
specification. For example, v8-M’s new security features splits
some of the system registers into two banked registers –a
non-secure register and a secure register– and the appropriate
register is automatically accessed depending on the current
security mode. But instructions that switch between secure
and non-secure registers start in one mode and end in a
different mode and the normally convenient automatic banking
mechanism obscures exactly which of the two registers is
being accessed. RIS testing found an error in the specification
of the Test Target (TT) instruction which queries the security
state and access permissions of a memory location.

C. Information Flow Analysis for v8-M

The most significant new feature of the v8-M microcontroller
specification is a set of security extensions to enable secure
Internet of Things applications.

To improve confidence in both the extensions and in the way
they were expressed in the ASL specification, we modified the
interpreter to generate dynamic dataflow graphs on which we
could perform information flow analyses. Most of the analyses
performed can be characterized as a non-interference property:
ensuring that non-secure modes cannot see secure data and that
non-secure data can only influence secure code in safe ways.

An example scenario tested in this process involved in-
formation leaks via interrupts. Interrupts automatically save
integer registers on the stack of the interrupted code and zero
the integer registers but, in order to keep interrupt latency
low, floating point registers are lazily saved on the stack only
when/if the interrupt handler uses a floating point instruction.
We wanted to ensure that lazy FP state preservation did not
introduce security holes. We wrote tests that iterated over all
combinations of initial mode, final mode, whether FP registers
had been modified and scanned the dynamic dataflow graph
for information leaks.

This form of testing caught two classes of bugs. First, it
caught bugs in how the architecture specification implemented
the architectural intent — resulting in fixes to how the speci-
fication was written. Second, and more importantly, it caught
bugs in the architectural intent by identifying potential security
attacks that had not been considered before.

D. Bounded Model Checking of Processors

We have been using both the v8-A and the v8-M architecture
specifications to perform bounded model checking of pipelines
for processors currently under development at ARM [6]. This
has primarily focused on verifying the ISA-implementation

parts of the processor, not the memory system, security
mechanisms or exception support. This process has been very
effective at detecting bugs in various stages of processor
development. But, besides verifying processors, it has another
important side-effect of performing a very thorough check
that the architecture specification and our tooling agrees with
how the processor implementors interpret the specification.
We found no errors in the published part of the specification
in this process but we did find a rather subtle bug in our
understanding of conditional UNDEFINED encodings and
UNPREDICTABLE encodings.

The M-class specification requires that conditional execu-
tion of an UNDEFINED instruction behaves as a no-op if the
condition does not hold and we had assumed that the same was
true for UNPREDICTABLE instructions. During verification
of a processor, the model checker detected an apparent bug
that involved a conditional UNPREDICTABLE encoding but,
through discussion between the processor designers and the
architects, we learned that there had been a recent clarifi-
cation of the architecture which said that conditional UN-
PREDICTABLE encodings are UNPREDICTABLE even if the
condition does not hold.

This error in our interpretation of the specification had
not been detected by testing because it is very, very hard to
construct useful tests of the UNPREDICTABLE instructions
because they are almost entirely unconstrained and can branch,
change registers, trigger exceptions, etc.

E. Summary

Large specifications are as likely to contain errors as large
programs so we have used many different approaches to test
the specifications. In the process, we realized that although
ARM publishes an official specification, the full requirements
are really distributed around many different places in the
company: the AVS suite, the reference simulator ARM uses
for processor verification, and the processor implementations.
The act of testing all these different instantiations of the
specification against each other has the effect of centralizing
this specification in a single location.

V. RELATED WORK

The most closely related work is that of Goel et al. [13]
who have created an executable specification of many key
parts of the x86-64 ISA and system architecture including
paging, segmentation and both user/supervisor levels. Their
model has been verified against real processors using the Pin
binary instrumentation tool and they have added a syscall
emulation layer to let them run real programs including
(amusingly) a SAT solver. This is a monumental piece of
work that sets the standard against which other architecture
specifications should be judged. Despite the similarities, our
different project priorities have led to many differences: (1)
They have a specification of user and supervisor levels, we
also have a specification of hypervisor and secure monitor
levels. (2) They have used their specification to formally
verify software using theorem proving, we have used our



specification to formally verify hardware using bounded model
checking. (3) They have implemented syscall emulation to let
them use user-level programs as tests, we have implemented a
test monitor and debugged the EL2/EL3 levels to allow us to
run ARM’s Architecture Conformance Suite which explores
the dark corners of the architecture by running bare-metal
programs. (4) They have focussed on modelling the x86-64
64-bit ISA, we have modelled the A64, A32 and T32 ISAs.
(5) They have consulted processor designers to understand
Intel’s architecture specification document, we have had all
our bugfixes and clarifications reviewed by ARM’s architects
and incorporated into ARM’s official architecture specification
document.

The most closely related ARM specifications are the
Fox/Myreen ARM v7-A ISA specification in HOL [1] and
Flur et al.’s ISA and concurrency specification in Sail [3] both
of which were tested against actual processors using random
and directed tests (8400 tests in Flur et al., 281,307 tests in
Fox/Myreen). In addition to user-mode instructions, our speci-
fication covers both the ARMv8-M architecture and the larger
ARMv8-A architecture, includes floating point, Advanced-
SIMD and the System Level Architecture. We have tested the
entire specification in multiple ways and with a larger range
of values and simulated more than 2.5 billion instructions in
the process. And we have used a model checker to compare
the ISA specification against actual implementations for all
instructions, all execution modes, all integer inputs and a
subset of floating point inputs [6].

Shi [14] extracted the ISA pseudocode from ARM’s v6
Architecture Reference Manual, automatically translated the
code to Coq and used that to verify that the ARM model in
the SimSoC simulator written in C faithfully implemented the
Coq specification. This is an impressive piece of work, and it
would be interesting to repeat their work using our new, more
trustworthy specification or to extend their proof to cover the
system level architecture.

The other major ARM ISA specification that we are aware
of is embedded in the CompCert compiler and is used in
the proof that the compiler faithfully translates the input C
program to ARM assembly code. This specification is limited
to a subset of the user-mode ARMv6 specification and there
is no published statement of how it was validated.

Hunt created a specification of the FM8501 processor [5]
and used it to formally verify the processor. The process of
formal verification greatly increases the trust we can place
in the corresponding parts of the specification because it
ensures that all the corner cases in both the processor and
the specification have been explored.

More broadly, anyone wrestling with a large specification is
obligated to find ways to verify that the formal specification
captures the (informal) requirements.

VI. CONCLUSIONS

Historically, ARM’s specification efforts have focused on a
single set of products: the ARM Architecture Reference Man-
uals [9], [10]. However, there are many more potential uses of

the specification if the specification is delivered in a flexible,
machine-readable format – for example, formal verification
of hardware and software, tools that manipulate instruction
encodings, debug tools, creating hardware verification tests.
Traditionally, all these other users manually transcribe parts of
the specification into some other notation: HOL, C, Verilog,
spreadsheets, etc. This process is laborious and error-prone
but, worse, it is fragmented: bugfixes or clarification found by
one group are not necessarily propagated to other groups or
to the master specification. Our primary goal in this project
was to enable formal verification of ARM processors against
the specification. But, by supporting as many of these uses
as possible, we created a virtuous cycle where bugfixes or
improvements were incorporated into the central specification
so that all users benefit from bugfixes as well as to amortize
the development effort across many uses.

This paper describes the steps required to create trustworthy
specifications of the full v8-M and v8-A architectures includ-
ing the instruction set architecture, memory protection and
translation, exceptions and system registers. While checking
that a formal specification captures the architects’ informal
intent is an unending process, we believe that our specification
is the most trustworthy and complete system specification of
any mainstream processor architecture.

We are currently working with Cambridge University on
a public release of our specification suited to verification of
machine code programs.
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