
The Haskell 98 Foreign Function Interface 1.0

An Addendum to the Haskell 98 Report

Manuel Chakravarty [editor], University of New South Wales
Sigbjorn Finne, Galois Connections, Inc.

Fergus Henderson, University of Melbourne
Marcin Kowalczyk, Warsaw University

Daan Leijen, University of Utrecht
Simon Marlow, Microsoft Research, Cambridge

Erik Meijer, Microsoft Corporation
Sven Panne, BetaResearch GmbH

Simon Peyton Jones, Microsoft Research, Cambridge
Alastair Reid, Reid Consulting (UK) Ltd.

Malcolm Wallace, University of York
Michael Weber, University of Aachen

Copyright (c) [2002..2003] Manuel M. T. Chakravarty
The authors intend this Report to belong to the entire Haskell community, and so we grant per-
mission to copy and distribute it for any purpose, provided that it is reproduced in its entirety,
including this Notice. Modified versions of this Report may also be copied and distributed for any
purpose, provided that the modified version is clearly presented as such, and that it does not claim
to be a definition of the Haskell 98 Foreign Function Interface.

The master version of the Haskell FFI Report is at haskell.org. Any corrections or changes in
the report are found there.

CONTENTS i

Contents

1 Introduction 1
1.1 Embedding Into Haskell 98 . 1
1.2 Language-Specific FFI Support . 1
1.3 Contexts . 1
1.4 Cross Language Type Consistency . 2

2 Lexical Structure 3

3 Foreign Declarations 4
3.1 Calling Conventions . 4
3.2 Foreign Types . 5
3.3 Import Declarations . 5
3.4 Export Declarations . 6

4 Specification of External Entities 6
4.1 Standard C Calls . 7

4.1.1 Import Declarations . 7
4.1.2 Export Declarations . 8
4.1.3 Constraints on Foreign Function Types . 8
4.1.4 Specification of Header Files . 9
4.1.5 C Argument Promotion . 9

4.2 Win32 API Calls . 10

5 Marshalling 11
5.1 Foreign . 11
5.2 Bits . 12
5.3 Int and Word . 13
5.4 Ptr . 13

5.4.1 Data Pointers . 13
5.4.2 Function Pointers . 14

5.5 ForeignPtr . 14
5.6 StablePtr . 16
5.7 Storable . 17
5.8 MarshalAlloc . 18
5.9 MarshalArray . 19
5.10 MarshalError . 20

5.10.1 I/O Errors . 20
5.10.2 Result Value Checks . 21

5.11 MarshalUtils . 22

6 C-Specific Marshalling 23
6.1 CForeign . 23
6.2 CTypes . 25
6.3 CString . 27
6.4 CError . 28

CONTENTS iii

Preface

The definition of Haskell 98 [7], while being comprehensive with respect to the functional core
language, does lack a range of features of more operational flavour, such as a foreign language
interface, concurrency support, and fully fledged exception handling. As these features are of cen-
tral importance to many real world applications of the language, there is a danger that different
implementations become de facto incompatible for such applications due to system-specific exten-
sions of the core language. The present FFI specification is aimed at reducing this risk by defining
a simple, yet comprehensive extension to Haskell 98 for the purpose of interfacing to program
components implemented in a language other than Haskell.

The goal behind this foreign function interface (FFI) specification is twofold: It enables (1) to
describe in Haskell the interface to foreign functionality and (2) to use from foreign code Haskell
routines. More precisely, its aim is to support the implementation of programs in a mixture of
Haskell and other languages such that the source code is portable across different implementations
of Haskell and non-Haskell systems as well as independent of the architecture and operating system.

The design as presented in this report builds on experiences with a number of foreign function
interfaces that, over time, have been provided by the major Haskell implementations. Central in
the final design was the goal to be comprehensive while being simple and minimising changes with
respect to Haskell 98; the latter includes to avoid pollution of the name space with new keywords.
Consequently, as much as possible of the FFI functionality is realised in the form of libraries.
Simplicity generally overruled maximum convenience for the programmer as a design goal. Thus,
support for more convenient interface specifications is the domain of system-independent tools
that generate code following the present specification.

Acknowledgements

We heartily thank the kind people who assisted us with their comments and suggestions on the
ffi@haskell.org and haskell@haskell.org mailing lists as well as all the users of previous
versions of the FFI who helped to shape the development by their feedback. We thank Olaf Chitil,
Peter Gammie, Wolfram Kahl, Martin D. Kealey, Ian Lynagh, John Meacham, Ross Paterson,
George Russell, and Wolfgang Thaller for errata and additions to previous versions of this report.

1

1 Introduction

The extension of Haskell 98 defined in this report facilitates the use of non-Haskell code from
Haskell and vice versa in a portable manner. Intrusion into Haskell 98 has been kept to a minimum
and the defined facilities have been extensively tested with large libraries.

The present Version 1.0 of the FFI report does only fully specify the interaction between Haskell
code with code that follows the C calling convention. However, the design of the FFI is such that
it enables the modular extension of the present definition to include the calling conventions of
other programming languages, such as C++ and Java. A precise definition of the support for
those languages is expected to be included in later versions of this report. The second major
omission from the present report is the definition of the interaction with multithreading in the
foreign language and, in particular, the treatment of thread-local state. Work on this problem is
not sufficiently mature to be included into Version 1.0 of the report.

1.1 Embedding Into Haskell 98

The present report is to be regarded as an addendum to the Haskell 98 Report [7]. As such,
syntactic and semantic definitions refer to names and definitions in the Haskell 98 Report where
appropriate without further explanation. Care has been taken to invalidate as few as possible legal
Haskell 98 programs in the process of adding FFI support. In particular, only a single addition to
the set of reserved identifiers, namely foreign, has been made.

Moreover, it is expected that the present FFI specification will be considered for inclusion into
future revisions of the Haskell standard.

1.2 Language-Specific FFI Support

The core of the present specification is independent of the foreign language that is used in conjunc-
tion with Haskell. However, there are two areas where FFI specifications must become language
specific: (1) the specification of external names and (2) the marshalling of the basic types of a
foreign language. As an example of the former, consider that in C [4] a simple identifier is suffi-
cient to identify an object, while Java [2], in general, requires a qualified name in conjunction with
argument and result types to resolve possible overloading. Regarding the second point, consider
that many languages do not specify the exact representation of some basic types. For example
the type int in C may be 16, 32, or 64 bits wide. Similarly, the Haskell report guarantees only
that Int covers at least the range [−229, 229 − 1]. As a consequence, to reliably represent values
of C’s int in Haskell, we have to introduce a new type CInt, which is guaranteed to match the
representation of int.

The specification of external names, dependent on a calling convention, is described in Sec-
tion 4, whereas the marshalling of the basic types in dependence on a foreign language is described
in Section 5.

1.3 Contexts

For a given Haskell system, we define the Haskell context to be the execution context of the abstract
machine on which the Haskell system is based. This includes the heap, stacks, and the registers of
the abstract machine and their mapping onto a concrete architecture. We call any other execution
context an external context. Generally, we cannot assume any compatibility between the data
formats and calling conventions between the Haskell context and a given external context, except
where the Haskell 98 report explicitly prescribes a specific data format.

The principal goal of a foreign function interface is to provide a programmable interface between
the Haskell context and external contexts. As a result Haskell threads can access data in external
contexts and invoke functions that are executed in an external context as well as vice versa. In
the rest of this report, external contexts are usually identified by a calling convention.

2 1 INTRODUCTION

1.4 Cross Language Type Consistency

Given that many external languages support static types, the question arises whether the consis-
tency of Haskell types with the types of the external language can be enforced for foreign functions.
Unfortunately, this is, in general, not possible without a significant investment on the part of the
implementor of the Haskell system (i.e., without implementing a dedicated type checker). For
example, in the case of the C calling convention, the only other approach would be to generate a
C prototype from the Haskell type and leave it to the C compiler to match this prototype with
the prototype that is specified in a C header file for the imported function. However, the Haskell
type is lacking some information that would be required to pursue this route. In particular, the
Haskell type does not contain any information as to when const modifiers have to be emitted.

As a consequence, this report does not require the Haskell system to check consistency with
foreign types. Nevertheless, Haskell systems are encouraged to provide any cross language consis-
tency checks that can be implemented with reasonable effort.

3

2 Lexical Structure

In the following, all formal grammatical definitions are based on the same notation as that defined
in the Haskell 98 Report [7, Section 2.1] and we make free use of all nonterminals defined in the
Haskell 98 Report. The only addition to the lexical structure of Haskell 98 [7, Section 2] is a single
new reserved identifier (namely, foreign) and a set of special identifiers. The latter have a special
meaning only within foreign declarations, but may be used as ordinary identifiers elsewhere.

The following productions are added:

reservedid → foreign
specialid → export | safe | unsafe | ccall

| cplusplus | dotnet | jvm | stdcall
| system-specific calling conventions

The special identifiers ccall, cplusplus, dotnet, jvm, and stdcall are defined to denote calling
conventions. However, a concrete implementation of the FFI is free to support additional, system-
specific calling conventions whose name is not explicitly listed here.

To refer to objects of an external C context, we introduce the following phrases:

chname → {chchar} . h (C header filename)
cid → letter {letter | ascDigit} (C identifier)
chchar → letter | ascSymbol〈&〉
letter → ascSmall | ascLarge |

The range of lexemes that are admissible for chname is a subset of those permitted as arguments
to the #include directive in C. In particular, a file name chname must end in the suffix .h. The
lexemes produced by cid coincide with those allowed as C identifiers, as specified in [4].

4 3 FOREIGN DECLARATIONS

Identifier Represented calling convention
ccall Calling convention of the standard C compiler on a system
cplusplus Calling convention of the standard C++ compiler on a system
dotnet Calling convention of the .net platform
jvm Calling convention of the Java Virtual Machine
stdcall Calling convention of the Win32 API (matches Pascal conventions)

Table 1: Calling conventions

3 Foreign Declarations

This section describes the extension of Haskell 98 by foreign declarations. The following production
for the nonterminal topdecl extends the same nonterminal from the Haskell 98 Report. All other
nonterminals are new.

topdecl → foreign fdecl
fdecl → import callconv [safety] impent var :: ftype (define variable)

| export callconv expent var :: ftype (expose variable)
callconv → ccall | stdcall | cplusplus | jvm | dotnet (calling convention)

| system-specific calling conventions
impent → [string] (imported external entity)
expent → [string] (exported entity)
safety → unsafe | safe

There are two flavours of foreign declarations: import and export declarations. An import decla-
ration makes an external entity, i.e., a function or memory location defined in an external context,
available in the Haskell context. Conversely, an export declaration defines a function of the Haskell
context as an external entity in an external context. Consequently, the two types of declarations
differ in that an import declaration defines a new variable, whereas an export declaration uses a
variable that is already defined in the Haskell module.

The external context that contains the external entity is determined by the calling convention
given in the foreign declaration. Consequently, the exact form of the specification of the external
entity is dependent on both the calling convention and on whether it appears in an import decla-
ration (as impent) or in an export declaration (as expent). To provide syntactic uniformity in the
presence of different calling conventions, it is guaranteed that the description of an external entity
lexically appears as a Haskell string lexeme. The only exception is where this string would be the
empty string (i.e., be of the form ""); in this case, the string may be omitted in its entirety.

3.1 Calling Conventions

The binary interface to an external entity on a given architecture is determined by a calling conven-
tion. It often depends on the programming language in which the external entity is implemented,
but usually is more dependent on the system for which the external entity has been compiled.

As an example of how the calling convention is dominated by the system rather than the
programming language, consider that an entity compiled to byte code for the Java Virtual Machine
(JVM) [6] needs to be invoked by the rules of the JVM rather than that of the source language in
which it is implemented (the entity might be implemented in Oberon, for example).

Any implementation of the Haskell 98 FFI must at least implement the C calling convention
denoted by ccall. All other calling conventions are optional. Generally, the set of calling conven-
tions is open, i.e., individual implementations may elect to support additional calling conventions.
In addition to ccall, Table 1 specifies a range of identifiers for common calling conventions.
Implementations need not implement all of these conventions, but if any is implemented, it must
use the listed name. For any other calling convention, implementations are free to choose a suitable
name.

3.2 Foreign Types 5

The present report does only define the semantics of the calling conventions ccall and stdcall.
Later versions of the report are expected to cover more calling conventions.

It should be noted that the code generated by a Haskell system to implement a particular
calling convention may vary widely with the target code of that system. For example, the calling
convention jvm will be trivial to implement for a Haskell compiler generating Java code, whereas
for a Haskell compiler generating C code, the Java Native Interface (JNI) [5] has to be targeted.

3.2 Foreign Types

The following types constitute the set of basic foreign types:

• Char, Int, Double, Float, and Bool as exported by the Haskell 98 Prelude as well as

• Int8, Int16, Int32, Int64, Word8, Word16, Word32, Word64, Ptr a, FunPtr a, and StablePtr
a, for any type a, as exported by Foreign (Section 5.1).

A Haskell system that implements the FFI needs to be able to pass these types between the Haskell
and the external context as function arguments and results.

Foreign types are produced according to the following grammar:

ftype → frtype
| fatype -> ftype

frtype → fatype
| ()

fatype → qtycon atype1 . . . atypek (k ≥ 0)

A foreign type is the Haskell type of an external entity. Only a subset of Haskell’s types are
permissible as foreign types, as only a restricted set of types can be canonically transferred between
the Haskell context and an external context. A foreign type generally has the form

at1 -> · · · -> atn -> rt

where n ≥ 0. It implies that the arity of the external entity is n.
The argument types ati produced by fatype must be marshallable foreign types; that is, each

ati is either (1) a basic foreign type or (2) a type synonym or renamed datatype of a marshallable
foreign type. Moreover, the result type rt produced by frtype must be a marshallable foreign result
type; that is, it is either a marshallable foreign type, the type (), or a type matching Prelude.IO
t, where t is a marshallable foreign type or ().

External functions are generally strict in all arguments.

3.3 Import Declarations

Generally, an import declaration has the form

foreign import c e v :: t

which declares the variable v of type t to be defined externally. Moreover, it specifies that v is
evaluated by executing the external entity identified by the string e using calling convention c.
The precise form of e depends on the calling convention and is detailed in Section 4. If a variable
v is defined by an import declaration, no other top-level declaration for v is allowed in the same
module. For example, the declaration

foreign import ccall "string.h strlen" cstrlen :: Ptr CChar -> IO CSize

introduces the function cstrlen, which invokes the external function strlen using the standard
C calling convention. Some external entities can be imported as pure functions; for example,

foreign import ccall "math.h sin" sin :: CDouble -> CDouble.

6 4 SPECIFICATION OF EXTERNAL ENTITIES

Such a declaration asserts that the external entity is a true function; i.e., when applied to the
same argument values, it always produces the same result.

Whether a particular form of external entity places a constraint on the Haskell type with which
it can be imported is defined in Section 4. Although, some forms of external entities restrict the
set of Haskell types that are permissible, the system can generally not guarantee the consistency
between the Haskell type given in an import declaration and the argument and result types of the
external entity. It is the responsibility of the programmer to ensure this consistency.

Optionally, an import declaration can specify, after the calling convention, the safety level that
should be used when invoking an external entity. A safe call is less efficient, but guarantees to
leave the Haskell system in a state that allows callbacks from the external code. In contrast, an
unsafe call, while carrying less overhead, must not trigger a callback into the Haskell system. If
it does, the system behaviour is undefined. The default for an invocation is to be safe. Note that
a callback into the Haskell system implies that a garbage collection might be triggered after an
external entity was called, but before this call returns. Consequently, objects other than stable
pointers (cf. Section 5.6) may be moved or garbage collected by the storage manager.

3.4 Export Declarations

The general form of export declarations is

foreign export c e v :: t

Such a declaration enables external access to v, which may be a value, field name, or class method
that is declared on the top-level of the same module or imported. Moreover, the Haskell system
defines the external entity described by the string e, which may be used by external code using the
calling convention c; an external invocation of the external entity e is translated into evaluation
of v. The type t must be an instance of the type of v. For example, we may have

foreign export ccall "addInt" (+) :: Int -> Int -> Int
foreign export ccall "addFloat" (+) :: Float -> Float -> Float

If an evaluation triggered by an external invocation of an exported Haskell value returns with
an exception, the system behaviour is undefined. Thus, Haskell exceptions have to be caught
within Haskell and explicitly marshalled to the foreign code.

4 Specification of External Entities

Each foreign declaration has to specify the external entity that is accessed or provided by that
declaration. The syntax and semantics of the notation that is required to uniquely determine an
external entity depends heavily on the calling convention by which this entity is accessed. For
example, for the calling convention ccall, a global label is sufficient. However, to uniquely identify
a method in the calling convention jvm, type information has to be provided. For the latter, there
is a choice between the Java source-level syntax of types and the syntax expected by JNI—but,
clearly, the syntax of the specification of an external entity depends on the calling convention and
may be non-trivial.

Consequently, the FFI does not fix a general syntax for denoting external entities, but requires
both impent and expent to take the form of a Haskell string literal. The formation rules for
the values of these strings depend on the calling convention and a Haskell system implementing
a particular calling convention will have to parse these strings in accordance with the calling
convention.

Defining impent and expent to take the form of a string implies that all information that is
needed to statically analyse the Haskell program is separated from the information needed to
generate the code interacting with the foreign language. This is, in particular, helpful for tools
processing Haskell source code. When ignoring the entity information provided by impent or

4.1 Standard C Calls 7

expent, foreign import and export declarations are still sufficient to infer identifier definition and
use information as well as type information.

For more complex calling conventions, there is a choice between the user-level syntax for
identifying entities (e.g., Java or C++) and the system-level syntax (e.g., the type syntax of JNI
or mangled C++, respectively). If such a choice exists, the user-level syntax is preferred. Not
only because it is more user friendly, but also because the system-level syntax may not be entirely
independent of the particular implementation of the foreign language.

The following defines the syntax for specifying external entities and their semantics for the
calling conventions ccall and stdcall. Other calling conventions from Table 1 are expected to
be defined in future versions of this report.

4.1 Standard C Calls

The following defines the structure of external entities for foreign declarations under the ccall
calling convention for both import and export declarations separately. Afterwards additional
constraints on the type of foreign functions are defined.

The FFI covers only access to C functions and global variables. There are no mechanisms to
access other entities of C programs. In particular, there is no support for accessing pre-processor
symbols from Haskell, which includes #defined constants. Access from Haskell to such entities
is the domain of language-specific tools, which provide added convenience over the plain FFI as
defined in this report.

4.1.1 Import Declarations

For import declarations, the syntax for the specification of external entities under the ccall calling
convention is as follows:

impent → " [static] [chname] [&] [cid] " (static function or address)
| " dynamic " (stub factory importing addresses)
| " wrapper " (stub factory exporting thunks)

The first alternative either imports a static function cid or, if & precedes the identifier, a static
address. If cid is omitted, it defaults to the name of the imported Haskell variable. The optional
filename chname specifies a C header file, where the intended meaning is that the header file
declares the C entity identified by cid. In particular, when the Haskell system compiles Haskell to
C code, the directive

#include "chname"

needs to be placed into any generated C file that refers to the foreign entity before the first
occurrence of that entity in the generated C file.

The second and third alternative, identified by the keywords dynamic and wrapper, respec-
tively, import stub functions that have to be generated by the Haskell system. In the case of
dynamic, the stub converts C function pointers into Haskell functions; and conversely, in the case
of wrapper, the stub converts Haskell thunks to C function pointers. If neither of the specifiers
static, dynamic, or wrapper is given, static is assumed. The specifier static is nevertheless
needed to import C routines that are named dynamic or wrapper.

It should be noted that a static foreign declaration that does not import an address (i.e., where
& is not used in the specification of the external entity) always refers to a C function, even if the
Haskell type is non-functional. For example,

foreign import ccall foo :: CInt

refers to a pure C function foo with no arguments that returns an integer value. Similarly, if the
type is IO CInt, the declaration refers to an impure nullary function. If a Haskell program needs
to access a C variable bar of integer type,

8 4 SPECIFICATION OF EXTERNAL ENTITIES

foreign import ccall "&" bar :: Ptr CInt

must be used to obtain a pointer referring to the variable. The variable can be read and updated
using the routines provided by the module Storable (cf. Section 5.7).

4.1.2 Export Declarations

External entities in ccall export declarations are of the form

expent → " [cid] "

The optional C identifier cid defines the external name by which the exported Haskell variable is
accessible in C. If it is omitted, the external name defaults to the name of the exported Haskell
variable.

4.1.3 Constraints on Foreign Function Types

In the case of import declaration, there are, depending on the kind of import declaration, con-
straints regarding the admissible Haskell type that the variable defined in the import may have.
These constraints are specified in the following.

Static Functions. A static function can be of any foreign type; in particular, the result type
may or may not be in the IO monad. If a function that is not pure is not imported in the
IO monad, the system behaviour is undefined. Generally, no check for consistency with the
C type of the imported label is performed.

As an example, consider

foreign import ccall "static stdlib.h" system :: Ptr CChar -> IO CInt

This declaration imports the system() function whose prototype is available from stdlib.h.

Static addresses. The type of an imported address is constrained to be of the form Ptr a or
FunPtr a, where a can be any type.

As an example, consider

foreign import ccall "errno.h &errno" errno :: Ptr CInt

It imports the address of the variable errno, which is of the C type int.

Dynamic import. The type of a dynamic stub has to be of the form (FunPtr ft) -> ft, where
ft may be any foreign type.

As an example, consider

foreign import ccall "dynamic"
mkFun :: FunPtr (CInt -> IO ()) -> (CInt -> IO ())

The stub factory mkFun converts any pointer to a C function that gets an integer value as
its only argument and does not have a return value into a corresponding Haskell function.

Dynamic wrapper. The type of a wrapper stub has to be of the form ft -> IO (FunPtr ft),
where ft may be any foreign type.

As an example, consider

foreign import ccall "wrapper"
mkCallback :: IO () -> IO (FunPtr (IO ()))

The stub factory mkCallback turns any Haskell computation of type IO () into a C function
pointer that can be passed to C routines, which can call back into the Haskell context by
invoking the referenced function.

4.1 Standard C Calls 9

4.1.4 Specification of Header Files

A C header specified in an import declaration is always included by #include "chname". There is
no explicit support for #include <chname> style inclusion. The ISO C99 [3] standard guarantees
that any search path that would be used for a #include <chname> is also used for #include
"chname" and it is guaranteed that these paths are searched after all paths that are unique to
#include "chname". Furthermore, we require that chname ends on .h to make parsing of the
specification of external entities unambiguous.

The specification of include files has been kept to a minimum on purpose. Libraries often
require a multitude of include directives, some of which may be system-dependent. Any design that
attempts to cover all possible configurations would introduce significant complexity. Moreover, in
the current design, a custom include file can be specified that uses the standard C preprocessor
features to include all relevant headers.

Header files have no impact on the semantics of a foreign call, and whether an implementation
uses the header file or not is implementation-defined. However, as some implementations may
require a header file that supplies a correct prototype for external functions in order to generate
correct code, portable FFI code must include suitable header files.

4.1.5 C Argument Promotion

The argument passing conventions of C are dependant on whether a function prototype for the
called functions is in scope at a call site. In particular, if no function prototype is in scope, default
argument promotion is applied to integral and floating types. In general, it cannot be expected
from a Haskell system that it is aware of whether a given C function was compiled with or without
a function prototype being in scope. For the sake of portability, we thus require that a Haskell
system generally implements calls to C functions as well as C stubs for Haskell functions as if a
function prototype for the called function is in scope.

This convention implies that the onus for ensuring the match between C and Haskell code is
placed on the FFI user. In particular, when a C function that was compiled without a prototype
is called from Haskell, the Haskell signature at the corresponding foreign import declaration
must use the types after argument promotion. For example, consider the following C function
definition, which lacks a prototype:

void foo (a)
float a;
{
...

}

The lack of a prototype implies that a C compiler will apply default argument promotion to the
parameter a, and thus, foo will expect to receive a value of type double, not float. Hence, the
correct foreign import declaration is

foreign import ccall foo :: Double -> IO ()

In contrast, a C function compiled with the prototype

void foo (float a);

requires

foreign import ccall foo :: Float -> IO ()

A similar situation arises in the case of foreign export declarations that use types that would
be altered under the C default argument promotion rules. When calling such Haskell functions
from C, a function prototype matching the signature provided in the foreign export declaration
must be in scope; otherwise, the C compiler will erroneously apply the promotion rules to all
function arguments.

10 4 SPECIFICATION OF EXTERNAL ENTITIES

Note that for a C function defined to a accept a variable number of arguments, all arguments
beyond the explicitly typed arguments suffer argument promotion. However, because C permits
the calling convention to be different for such functions; a Haskell system will, in general, not be
able to make use of variable argument functions. Hence, their use is deprecated in portable code.

4.2 Win32 API Calls

The specification of external entities under the stdcall calling convention is identical to that for
standard C calls. The two calling conventions only differ in the generated code.

11

5 Marshalling

In addition to the language extension discussed in previous sections, the FFI includes a set of
standard libraries, which ease portable use of foreign functions as well as marshalling of compound
structures. Generally, the marshalling of Haskell structures into a foreign representation and vice
versa can be implemented in either Haskell or the foreign language. At least where the foreign
language is at a significantly lower level, e.g. C, there are good reasons for doing the marshalling
in Haskell:

• Haskell’s lazy evaluation strategy would require any foreign code that attempts to access
Haskell structures to force the evaluation of these structures before accessing them. This
would lead to complicated code in the foreign language, but does not need any extra con-
sideration when coding the marshalling in Haskell.

• Despite the fact that marshalling code in Haskell tends to look like C in Haskell syntax, the
strong type system still catches many errors that would otherwise lead to difficult-to-debug
runtime faults.

• Direct access to Haskell heap structures from a language like C—especially, when marshalling
from C to Haskell, i.e., when Haskell structures are created—carries the risk of corrupting
the heap, which usually leads to faults that are very hard to debug.

Consequently, the Haskell FFI emphasises Haskell-side marshalling.
The interface to the marshalling libraries is provided by the module Foreign plus a language-

dependent module per supported language. In particular, the standard requires the availability
of the module CForeign, which simplifies portable interfacing with external C code. Language-
dependent modules, such as CForeign, generally provide Haskell types representing the basic types
of the foreign language using a representation that is compatible with the foreign types as imple-
mented by the default implementation of the foreign language on the present architecture. This is
especially important for languages where the standard leaves some aspects of the implementation
of basic types open. For example, in C, the size of the various integral types is not fixed. Thus, to
represent C interfaces faithfully in Haskell, for each integral type in C, we need to have an integral
type in Haskell that is guaranteed to have the same size as the corresponding C type.

In the following, the interface of the language independent support is defined. The interface
for C-specific support is discussed in Section 6.

5.1 Foreign

The module Foreign combines the interfaces of all modules providing language-independent mar-
shalling support. These modules are Bits, Int, Word, Ptr, ForeignPtr, StablePtr, Storable,
MarshalAlloc, MarshalArray, MarshalError, and MarshalUtils.

Sometimes an external entity is a pure function, except that it passes arguments and/or results
via pointers. To permit the packaging of such entities as pure functions, Foreign provides the
following primitive:

unsafePerformIO :: IO a -> a
Return the value resulting from executing the IO action. This value should be independent
of the environment; otherwise, the system behaviour is undefined.

If the IO computation wrapped in unsafePerformIO performs side effects, then the relative
order in which those side effects take place (relative to the main IO trunk, or other calls to
unsafePerformIO) is indeterminate. Moreover, the side effects may be performed several
times or not at all, depending on lazy evaluation and whether the compiler unfolds an
enclosing definition.

Great care should be exercised in the use of this primitive. Not only because of the danger of
introducing side effects, but also because unsafePerformIO may compromise typing; to avoid

12 5 MARSHALLING

this, the programmer should ensure that the result of unsafePerformIO has a monomorphic
type.

5.2 Bits

This module provides functions implementing typical bit operations overloaded for the standard
integral types Int and Integer as well as the types provided by the modules Int and Word in
Section 5.3. The overloading is implemented via a new type class Bits, which is a subclass of Num
and has the following member functions:

(.&.), (.|.), xor :: Bits a => a -> a -> a
Implement bitwise conjunction, disjunction, and exclusive or. The infix operators have the
following precedences:

infixl 7 .&.
infixl 6 ‘xor‘
infixl 5 .|.

complement :: Bits a => a -> a
Calculate the bitwise complement of the argument.

shift, rotate :: Bits a => a -> Int -> a
Shift or rotate the bit pattern to the left for a positive second argument and to the right for
a negative argument. The function shift performs sign extension on signed number types;
i.e., right shifts fill the top bits with 1 if the number is negative and with 0 otherwise. These
operators have the following precedences as infix operators:

infixl 8 ‘shift‘, ‘rotate‘

For unbounded types (e.g., Integer), rotate is equivalent to shift. An instance can define
either this unified rotate or rotateL and rotateR, depending on which is more convenient
for the type in question.

bit :: Bits a => Int -> a
Obtain a value where only the nth bit is set.

setBit, clearBit, complementBit :: a -> Int -> a
Set, clear, or complement the bit at the given position.

testBit :: Bits a => a -> Int -> Bool
Check whether the nth bit of the first argument is set.

bitSize :: Bits a => a -> Int
isSigned :: Bits a => a -> Bool

Respectively, query the number of bits of values of type a and whether these values are
signed. These functions never evaluate their argument. The function bitSize is undefined
for unbounded types (e.g., Integer).

shiftL, shiftR :: Bits a => a -> Int -> a
rotateL, rotateR :: Bits a => a -> Int -> a

The functions shiftR and rotateR are synonyms for shift and rotate; shiftL and rotateL
negate the second argument. These operators have the following precedences as infix oper-
ators:

infixl 8 ‘shiftL‘, ‘shiftR‘, ‘rotateL‘, ‘rotateR‘

Bits are numbered from 0 with bit 0 being the least significant bit. A minimal complete definition
of the type class Bits must include definitions for the following functions: (.&.), (.|.), xor,
complement, shift, rotate, bitSize, and isSigned.

5.3 Int and Word 13

5.3 Int and Word

The two modules Int and Word provide the following signed and unsigned integral types of fixed
size:

Size in bits Signed Unsigned
8 Int8 Word8
16 Int16 Word16
32 Int32 Word32
64 Int64 Word64

For these integral types, the modules Int and Word export class instances for the class Bits and
all type classes for which Int has an instance in the Haskell 98 Prelude and standard libraries.
The constraints on the implementation of these instances are also the same as those outlined for
Int in the Haskell Report. There is, however, the additional constraint that all arithmetic on the
fixed-sized types is performed modulo 2n.

5.4 Ptr

The module Ptr provides typed pointers to foreign entities. We distinguish two kinds of pointers:
pointers to data and pointers to functions. It is understood that these two kinds of pointers may
be represented differently as they may be references to data and text segments, respectively.

5.4.1 Data Pointers

The interface defining data pointers and associated operations is as follows:

data Ptr a
A value of type Ptr a represents a pointer to an object, or an array of objects, which may
be marshalled to or from Haskell values of type a. The type a will normally be an instance
of class Storable (see Section 5.7), which provides the necessary marshalling operations.

Instances for the classes Eq, Ord, and Show are provided.

nullPtr :: Ptr a
The constant nullPtr contains a distinguished value of Ptr that is not associated with a
valid memory location.

castPtr :: Ptr a -> Ptr b
The castPtr function casts a pointer from one type to another.

plusPtr :: Ptr a -> Int -> Ptr b
Advances the given address by the given offset in bytes.

alignPtr :: Ptr a -> Int -> Ptr a
Given an arbitrary address and an alignment constraint, alignPtr yields an address, the
same or next higher, that fulfills the alignment constraint. An alignment constraint x is
fulfilled by any address divisible by x. This operation is idempotent.

minusPtr :: Ptr a -> Ptr b -> Int
Compute the offset required to get from the first to the second argument. We have

p2 == p1 ‘plusPtr‘ (p2 ‘minusPtr‘ p1)

It should be noted that the use of Int for pointer differences essentially forces any implementation
to represent Int in as many bits as used in the representation of pointer values.

14 5 MARSHALLING

5.4.2 Function Pointers

The interface defining function pointers and associated operations is as follows:

data FunPtr a
A value of type FunPtr a is a pointer to a piece of code. It may be the pointer to a C
function or to a Haskell function created using a wrapper stub as outlined in Section 4.1.
For example,

type Compare = Int -> Int -> Bool
foreign import ccall "wrapper"
mkCompare :: Compare -> IO (FunPtr Compare)

Instances for the classes Eq, Ord, and Show are provided.

nullFunPtr :: FunPtr a
The constant nullFunPtr contains a distinguished value of FunPtr that is not associated
with a valid memory location.

castFunPtr :: FunPtr a -> FunPtr b
Cast a FunPtr to a FunPtr of a different type.

freeHaskellFunPtr :: FunPtr a -> IO ()
Release the storage associated with the given FunPtr, which must have been obtained from
a wrapper stub. This should be called whenever the return value from a foreign import
wrapper function is no longer required; otherwise, the storage it uses will leak.

Moreover, there are two functions that are only valid on architectures where data and function
pointers range over the same set of addresses. Only where bindings to external libraries are
made whose interface already relies on this assumption, should the use of castFunPtrToPtr and
castPtrToFunPtr be considered; otherwise, it is recommended to avoid using these functions.

castFunPtrToPtr :: FunPtr a -> Ptr b
castPtrToFunPtr :: Ptr a -> FunPtr b

These two functions cast Ptrs to FunPtrs and vice versa.

5.5 ForeignPtr

The type ForeignPtr represents references to objects that are maintained in a foreign language,
i.e., objects that are not part of the data structures usually managed by the Haskell storage
manager. The type ForeignPtr is parameterised in the same way as Ptr (cf. Section 5.4), but in
contrast to vanilla memory references of type Ptr, ForeignPtrs may be associated with finalizers.
A finalizer is a routine that is invoked when the Haskell storage manager detects that—within the
Haskell heap and stack—there are no more references left that are pointing to the ForeignPtr.
Typically, the finalizer will free the resources bound by the foreign object. Finalizers are generally
implemented in the foreign language1 and have either of the following two Haskell types:

type FinalizerPtr a = FunPtr (Ptr a -> IO ())
type FinalizerEnvPtr env a = FunPtr (Ptr env -> Ptr a -> IO ())

A foreign finalizer is represented as a pointer to a C function of type Ptr a -> IO () or a C
function of type Ptr env -> Ptr a -> IO (), where Ptr env represents an optional environment
passed to the finalizer on invocation. That is, a foreign finalizer attached to a finalized pointer
ForeignPtr a gets the finalized pointer in the form of a raw pointer of type Ptr a as an argument
when it is invoked. In addition, a foreign finalizer of type FinalizerEnvPtr env a also gets an
environment pointer of type Ptr env. There is no guarantee on how soon the finalizer is executed
after the last reference to the associated foreign pointer was dropped; this depends on the details
of the Haskell storage manager. The only guarantee is that the finalizer runs before the program

1Finalizers in Haskell cannot be safely realised without requiring support for concurrency [1].

5.5 ForeignPtr 15

terminates. Whether a finalizer may call back into the Haskell system is system dependent.
Portable code may not rely on such callbacks.

Foreign finalizers that expect an environment are a means to model closures in languages that
do not support them natively, such as C. They recover part of the convenience lost by requiring
finalizers to be defined in the foreign languages rather than in Haskell.

The data type ForeignPtr and associated operations have the following signature and purpose:

data ForeignPtr a
A value of type ForeignPtr a represents a pointer to an object, or an array of objects,
which may be marshalled to or from Haskell values of type a. The type a will normally be
an instance of class Storable (see Section 5.7), which provides the marshalling operations.

Instances for the classes Eq, Ord, and Show are provided. Equality and ordering of two foreign
pointers are the same as for the plain pointers obtained with unsafeForeignPtrToPtr from
those foreign pointers.

newForeignPtr :: Ptr a -> IO (ForeignPtr a)
Turn a plain memory reference into a foreign pointer that may be associated with finalizers
by using addForeignPtrFinalizer.

newForeignPtr :: FinalizerPtr a -> Ptr a -> IO (ForeignPtr a)
This is a convenience function that turns a plain memory reference into a foreign pointer
and immediately adds a finalizer. It is defined as

newForeignPtr finalizer ptr =
do
fp <- newForeignPtr_ ptr
addForeignPtrFinalizer finalizer fp
return fp

newForeignPtrEnv :: FinalizerEnvPtr env a -> Ptr env -> Ptr a -> IO (ForeignPtr a)
This variant of newForeignPtr adds a finalizer that expects an environment in addition to
the finalized pointer. The environment that will be passed to the finalizer is fixed by the
second argument to newForeignPtrEnv.

addForeignPtrFinalizer :: FinalizerPtr a -> ForeignPtr a -> IO ()
Add a finalizer to the given foreign pointer. All finalizers associated with a single foreign
pointer are executed in the opposite order of their addition—i.e., the finalizer added last will
be executed first.

addForeignPtrFinalizerEnv :: FinalizerEnvPtr env a -> Ptr env -> ForeignPtr a
-> IO ()

Add a finalizer that expects an environment to an existing foreign pointer.

mallocForeignPtr :: Storable a => IO (ForeignPtr a)
Allocate a block of memory that is sufficient to hold values of type a. The size of the memory
area is determined by the function Storable.sizeOf (Section 5.7). This corresponds to
MarshalAlloc.malloc (Section 5.8), but automatically attaches a finalizer that frees the
block of memory as soon as all references to that block of of memory have been dropped.
It is not guaranteed that the block of memory was allocated by MarshalAlloc.malloc; so,
MarshalAlloc.realloc must not be applied to the resulting pointer.

mallocForeignPtrBytes :: Int -> IO (ForeignPtr a)
Allocate a block of memory of the given number of bytes with a finalizer attached that frees
the block of memory as soon as all references to that block of memory have been dropped.
As for mallocForeignPtr, MarshalAlloc.realloc must not be applied to the resulting
pointer.

mallocForeignPtrArray :: Storable a => Int -> IO (ForeignPtr a)

16 5 MARSHALLING

mallocForeignPtrArray0 :: Storable a => Int -> IO (ForeignPtr a)
These functions correspond to MarshalArray’s mallocArray and mallocArray0, respec-
tively, but yield a memory area that has a finalizer attached that releases the memory area.
As with the previous two functions, it is not guaranteed that the block of memory was
allocated by MarshalAlloc.malloc.

withForeignPtr :: ForeignPtr a -> (Ptr a -> IO b) -> IO b
This is a way to obtain the pointer living inside a foreign pointer. This function takes a
function which is applied to that pointer. The resulting IO action is then executed. The
foreign pointer is kept alive at least during the whole action, even if it is not used directly
inside. Note that it is not safe to return the pointer from the action and use it after the
action completes. All uses of the pointer should be inside the withForeignPtr bracket.

More precisely, the foreign pointer may be finalized after withForeignPtr is finished if the
first argument was the last occurrence of that foreign pointer. Finalisation of the foreign
pointer might render the pointer that is passed to the function useless. Consequently, this
pointer cannot be used safely anymore after the withForeignPtr is finished, unless the
function touchForeignPtr is used to explicitly keep the foreign pointer alive.

This function is normally used for marshalling data to or from the object pointed to by the
ForeignPtr, using the operations from the Storable class.

unsafeForeignPtrToPtr :: ForeignPtr a -> Ptr a
Extract the pointer component of a foreign pointer. This is a potentially dangerous opera-
tion. If the argument to unsafeForeignPtrToPtr is the last usage occurrence of the given
foreign pointer, then its finalizer(s) will be run, which potentially invalidates the plain pointer
just obtained. Hence, touchForeignPtr must be used wherever it has to be guaranteed that
the pointer lives on—i.e., has another usage occurrence.

It should be noticed that this function does not need to be monadic when used in combination
with touchForeignPtr. Until the unsafeForeignPtrToPtr is executed, the thunk repre-
senting the suspended call keeps the foreign pointer alive. Afterwards, the touchForeignPtr
keeps the pointer alive.

To avoid subtle coding errors, hand written marshalling code should preferably use the func-
tion withForeignPtr rather than unsafeForeignPtrToPtr and touchForeignPtr. How-
ever, the later routines are occasionally preferred in tool-generated marshalling code.

touchForeignPtr :: ForeignPtr a -> IO ()
Ensure that the foreign pointer in question is alive at the given place in the sequence of IO
actions. In particular, withForeignPtr does a touchForeignPtr after it executes the user
action.

This function can be used to express liveness dependencies between ForeignPtrs: For exam-
ple, if the finalizer for one ForeignPtr touches a second ForeignPtr, then it is ensured that
the second ForeignPtr will stay alive at least as long as the first. This can be useful when you
want to manipulate interior pointers to a foreign structure: You can use touchForeignPtr
to express the requirement that the exterior pointer must not be finalized until the interior
pointer is no longer referenced.

castForeignPtr :: ForeignPtr a -> ForeignPtr b
Cast a ForeignPtr parameterised by one type into another type.

5.6 StablePtr

A stable pointer is a reference to a Haskell expression that is guaranteed not to be affected by
garbage collection, i.e., it will neither be deallocated nor will the value of the stable pointer itself
change during garbage collection (ordinary references may be relocated during garbage collection).
Consequently, stable pointers can be passed to foreign code, which can treat it as an opaque
reference to a Haskell value.

5.7 Storable 17

The data type and associated operations have the following signature and purpose:

data StablePtr a
Values of this type represent a stable reference to a Haskell value of type a.

newStablePtr :: a -> IO (StablePtr a)
Create a stable pointer referring to the given Haskell value.

deRefStablePtr :: StablePtr a -> IO a
Obtain the Haskell value referenced by a stable pointer, i.e., the same value that was passed
to the corresponding call to makeStablePtr. If the argument to deRefStablePtr has already
been freed using freeStablePtr, the behaviour of deRefStablePtr is undefined.

freeStablePtr :: StablePtr a -> IO ()
Dissolve the association between the stable pointer and the Haskell value. Afterwards, if the
stable pointer is passed to deRefStablePtr or freeStablePtr, the behaviour is undefined.
However, the stable pointer may still be passed to castStablePtrToPtr, but the Ptr ()
value returned by castStablePtrToPtr, in this case, is undefined (in particular, it may be
Ptr.nullPtr). Nevertheless, the call to castStablePtrToPtr is guaranteed not to diverge.

castStablePtrToPtr :: StablePtr a -> Ptr ()
Coerce a stable pointer to an address. No guarantees are made about the resulting value,
except that the original stable pointer can be recovered by castPtrToStablePtr. In partic-
ular, the address may not refer to an accessible memory location and any attempt to pass it
to the member functions of the class Storable (Section 5.7) leads to undefined behaviour.

castPtrToStablePtr :: Ptr () -> StablePtr a
The inverse of castStablePtrToPtr, i.e., we have the identity

sp == castPtrToStablePtr (castStablePtrToPtr sp)

for any stable pointer sp on which freeStablePtr has not been executed yet. More-
over, castPtrToStablePtr may only be applied to pointers that have been produced by
castStablePtrToPtr.

It is important to free stable pointers that are no longer required by using freeStablePtr.
Otherwise, the object referenced by the stable pointer will be retained in the heap.

5.7 Storable

To code marshalling in Haskell, Haskell data structures need to be translated into the binary repre-
sentation of a corresponding data structure of the foreign language and vice versa. To this end, the
module Storable provides routines that manipulate primitive data types stored in unstructured
memory blocks. The class Storable is instantiated for all primitive types that can be stored in
raw memory. Reading and writing these types to arbitrary memory locations is implemented by
the member functions of the class. The member functions, furthermore, encompass support for
computing the storage requirements and alignment restrictions of storable types.

Memory addresses are represented as values of type Ptr a (Section 5.4), where a is a storable
type. The type argument to Ptr provides some type safety in marshalling code, as pointers
to different types cannot be mixed without an explicit cast. Moreover, it assists in resolving
overloading.

The class Storable is instantiated for all standard basic types of Haskell, the fixed size integral
types of the modules Int and Word (Section 5.3), data and function pointers (Section 5.4), and
stable pointers (Section 5.6). There is no instance of Storable for foreign pointers. The intention
is to ensure that storing a foreign pointer requires an explicit cast to a plain Ptr, which makes it
obvious that the finalizers of the foreign pointer may be invoked at this point if no other reference
to the pointer exists anymore.

The signatures and behaviour of the member functions of the class Storable are as follows:

18 5 MARSHALLING

sizeOf :: Storable a => a -> Int
alignment :: Storable a => a -> Int

The function sizeOf computes the storage requirements (in bytes) of the argument, and
alignment computes the alignment constraint of the argument. An alignment constraint x is
fulfilled by any address divisible by x. Both functions do not evaluate their argument, but
compute the result on the basis of the type of the argument alone. We require that the size
is divisible by the alignment. (Thus each element of a contiguous array of storable values
will be properly aligned if the first one is.)

peekElemOff :: Storable a => Ptr a -> Int -> IO a
Read a value from a memory area regarded as an array of values of the same kind. The first
argument specifies the start address of the array and the second the index into the array
(the first element of the array has index 0).

pokeElemOff :: Storable a => Ptr a -> Int -> a -> IO ()
Write a value to a memory area regarded as an array of values of the same kind. The first
and second argument are as for peekElemOff.

peekByteOff :: Storable a => Ptr b -> Int -> IO a
Read a value from a memory location given by a base address and byte offset from that base
address.

pokeByteOff :: Storable a => Ptr b -> Int -> a -> IO ()
Write a value to a memory location given by a base address and offset from that base address.

peek :: Storable a => Ptr a -> IO a
Read a value from the given memory location.

poke :: Storable a => Ptr a -> a -> IO ()
Write the given value to the given memory location.

On some architectures, the peek and poke functions might require properly aligned addresses to
function correctly. Thus, portable code should ensure that when peeking or poking values of some
type a, the alignment constraint for a, as given by the function alignment is fulfilled.

A minimal complete definition of Storable needs to define sizeOf, alignment, one of peek,
peekElemOff, or peekByteOff, and one of poke, pokeElemOff, and pokeByteOff.

5.8 MarshalAlloc

The module MarshalAlloc provides operations to allocate and deallocate blocks of raw mem-
ory (i.e., unstructured chunks of memory outside of the area maintained by the Haskell storage
manager). These memory blocks are commonly used to pass compound data structures to foreign
functions or to provide space in which compound result values are obtained from foreign functions.
For example, Haskell lists are typically passed as C arrays to C functions; the storage space for
such an array can be allocated by the following functions:

malloc :: Storable a => IO (Ptr a)
Allocate a block of memory that is sufficient to hold values of type a. The size of the memory
area is determined by the function Storable.sizeOf (Section 5.7).

mallocBytes :: Int -> IO (Ptr a)
Allocate a block of memory of the given number of bytes. The block of memory is sufficiently
aligned for any of the basic foreign types (see Section 3.2) that fits into a memory block of
the allocated size.

alloca :: Storable a => (Ptr a -> IO b) -> IO b
Allocate a block of memory of the same size as malloc, but the reference is passed to a
computation instead of being returned. When the computation terminates, free the memory
area again. The operation is exception-safe; i.e., allocated memory is freed if an exception
is thrown in the marshalling computation.

5.9 MarshalArray 19

allocaBytes :: Int -> (Ptr a -> IO b) -> IO b
As alloca, but allocate a memory area of the given size. The same alignment constraint as
for mallocBytes holds.

realloc :: Storable b => Ptr a -> IO (Ptr b)
Resize a memory area that was allocated with malloc or mallocBytes to the size needed to
store values of type b. The returned pointer may refer to an entirely different memory area,
but will be suitably aligned to hold values of type b. The contents of the referenced memory
area will be the same as of the original pointer up to the minimum of the size of values of
type a and b. If the argument to realloc is Ptr.nullPtr, realloc behaves like malloc.

reallocBytes :: Ptr a -> Int -> IO (Ptr a)
As realloc, but allocate a memory area of the given size. In addition, if the requested size
is 0, reallocBytes behaves like free.

free :: Ptr a -> IO ()
Free a block of memory that was allocated with malloc, mallocBytes, realloc, reallocBytes,
or any of the allocation functions from MarshalArray (see Section 5.9).

finalizerFree :: FinalizerPtr a
Foreign finalizer that performs the same operation as free.

If any of the allocation functions fails, a value of Ptr.nullPtr is produced. If free or reallocBytes
is applied to a memory area that has been allocated with alloca or allocaBytes, the behaviour
is undefined. Any further access to memory areas allocated with alloca or allocaBytes, after
the computation that was passed to the allocation function has terminated, leads to undefined
behaviour. Any further access to the memory area referenced by a pointer passed to realloc,
reallocBytes, or free entails undefined behaviour.

5.9 MarshalArray

The module MarshalArray provides operations for marshalling Haskell lists into monolithic arrays
and vice versa. Most functions come in two flavours: one for arrays terminated by a special
termination element and one where an explicit length parameter is used to determine the extent
of an array. The typical example for the former case are C’s NUL terminated strings. However,
please note that C strings should usually be marshalled using the functions provided by CString
(Section 6.3) as the Unicode encoding has to be taken into account. All functions specifically
operating on arrays that are terminated by a special termination element have a name ending
on 0—e.g., mallocArray allocates space for an array of the given size, whereas mallocArray0
allocates space for one more element to ensure that there is room for the terminator.

The following functions are provided by the module:

mallocArray :: Storable a => Int -> IO (Ptr a)
allocaArray :: Storable a => Int -> (Ptr a -> IO b) -> IO b
reallocArray :: Storable a => Ptr a -> Int -> IO (Ptr a)

The functions behave like the functions malloc, alloca, and realloc provided by the
module MarshalAlloc (Section 5.8), respectively, except that they allocate a memory area
that can hold an array of elements of the given length, instead of storage for just a single
element.

mallocArray0 :: Storable a => Int -> IO (Ptr a)
allocaArray0 :: Storable a => Int -> (Ptr a -> IO b) -> IO b
reallocArray0 :: Storable a => Ptr a -> Int -> IO (Ptr a)

These functions are like the previous three functions, but reserve storage space for one
additional array element to allow for a termination indicator.

peekArray :: Storable a => Int -> Ptr a -> IO [a]
Marshal an array of the given length and starting at the address indicated by the pointer
argument into a Haskell list using Storable.peekElemOff to obtain the individual elements.
The order of elements in the list matches the order in the array.

20 5 MARSHALLING

pokeArray :: Storable a => Ptr a -> [a] -> IO ()
Marshal the elements of the given list into an array whose start address is determined by the
first argument using Storable.pokeElemOff to write the individual elements. The order of
elements in the array matches that in the list.

peekArray0 :: (Storable a, Eq a) => a -> Ptr a -> IO [a]
Marshal an array like peekArray, but instead of the length of the array a terminator element
is specified by the first argument. All elements of the array, starting with the first element,
up to, but excluding the first occurrence of an element that is equal (as determined by ==)
to the terminator are marshalled.

pokeArray0 :: Storable a => a -> Ptr a -> [a] -> IO ()
Marshal an array like pokeArray, but write a terminator value (determined by the first
argument) after the last element of the list. Note that the terminator must not occur in the
marshalled list if it should be possible to extract the list with peekArray0.

newArray :: Storable a => [a] -> IO (Ptr a)
withArray :: Storable a => [a] -> (Ptr a -> IO b) -> IO b

These two functions combine mallocArray and allocaArray, respectively, with pokeArray;
i.e., they allocate a memory area for an array whose length matches that of the list, and
then, marshal the list into that memory area.

newArray0 :: Storable a => a -> [a] -> IO (Ptr a)
withArray0 :: Storable a => a -> [a] -> (Ptr a -> IO b) -> IO b

These two functions combine mallocArray0 and allocaArray0, respectively, with the func-
tion pokeArray0; i.e., they allocate a memory area for an array whose length matches that
of the list, and then, marshal the list into that memory area. The first argument determines
the terminator.

copyArray :: Storable a => Ptr a -> Ptr a -> Int -> IO ()
moveArray :: Storable a => Ptr a -> Ptr a -> Int -> IO ()

These two functions copy entire arrays and behave like the routines MarshalUtils.copyBytes
and MarshalUtils.moveBytes, respectively (Section 5.11). In particular, moveArray allows
the source and destination array to overlap, whereas copyArray does not allow overlapping
arrays. Both functions take a reference to the destination array as their first, and a ref-
erence to the source as their second argument. However, in contrast to the routines from
MarshalUtils the third argument here specifies the number of array elements (whose type
is specified by the parametrised pointer arguments) instead of the number of bytes to copy.

lengthArray0 :: (Storable a, Eq a) => a -> Ptr a -> IO Int
Determine the length of an array whose end is marked by the first occurrence of the given
terminator (first argument). The length is measured in array elements (not bytes) and does
not include the terminator.

advancePtr :: Storable a => Ptr a -> Int -> Ptr a
Advance a reference to an array by as many array elements (not bytes) as specified.

5.10 MarshalError

The module MarshalError provides language independent routines for converting error conditions
of external functions into Haskell IO monad exceptions. It consists out of two parts. The first part
extends the I/O error facilities of the IO module of the Haskell 98 Library Report with functionality
to construct I/O errors. The second part provides a set of functions that ease turning exceptional
result values into I/O errors.

5.10.1 I/O Errors

The following functions can be used to construct values of type IOError.

5.10 MarshalError 21

data IOErrorType
This is an abstract type that contains a value for each variant of IOError.

mkIOError :: IOErrorType -> String -> Maybe Handle -> Maybe FilePath -> IOError
Construct an IOError of the given type where the second argument describes the error
location and the third and fourth argument contain the file handle and file path of the file
involved in the error if applicable.

alreadyExistsErrorType :: IOErrorType
I/O error where the operation failed because one of its arguments already exists.

doesNotExistErrorType :: IOErrorType
I/O error where the operation failed because one of its arguments does not exist.

alreadyInUseErrorType :: IOErrorType
I/O error where the operation failed because one of its arguments is a single-use resource,
which is already being used.

fullErrorType :: IOErrorType
I/O error where the operation failed because the device is full.

eofErrorType :: IOErrorType
I/O error where the operation failed because the end of file has been reached.

illegalOperationType :: IOErrorType
I/O error where the operation is not possible.

permissionErrorType :: IOErrorType
I/O error where the operation failed because the user does not have sufficient operating
system privilege to perform that operation.

userErrorType :: IOErrorType
I/O error that is programmer-defined.

annotateIOError :: IOError -> String -> Maybe Handle -> Maybe FilePath -> IOError
Adds a location description and maybe a file path and file handle to an I/O error. If any
of the file handle or file path is not given the corresponding value in the I/O error remains
unaltered.

5.10.2 Result Value Checks

The following routines are useful for testing return values and raising an I/O exception in case of
values indicating an error state.
throwIf :: (a -> Bool) -> (a -> String) -> IO a -> IO a

Execute the computation determined by the third argument. If the predicate provided in
the first argument yields True when applied to the result of that computation, raise an IO
exception that includes an error message obtained by applying the second argument to the
result of the computation. If no exception is raised, the result of the computation is the
result of the whole operation.

throwIf_:: (a -> Bool) -> (a -> String) -> IO a -> IO ()
Operate as throwIf does, but discard the result of the computation in any case.

throwIfNeg :: (Ord a, Num a) => (a -> String) -> IO a -> IO a
throwIfNeg_ :: (Ord a, Num a) => (a -> String) -> IO a -> IO ()

These two functions are instances of throwIf and throwIf_, respectively, where the predi-
cate is (< 0).

throwIfNull :: String -> IO (Ptr a) -> IO (Ptr a)
This is an instance of throwIf, where the predicate is (== Ptr.nullPtr) and the error
message is constant.

void :: IO a -> IO ()
Discard the result of a computation.

22 5 MARSHALLING

5.11 MarshalUtils

Finally, the module MarshalUtils provides a set of useful auxiliary routines.

new :: Storable a => a -> IO (Ptr a)
This function first applies MarshalAlloc.malloc (Section 5.8) to its argument, and then,
stores the argument in the newly allocated memory area using Storable.poke (Section 5.7).

with :: Storable a => a -> (Ptr a -> IO b) -> IO b
This function is like new, but uses MarshalAlloc.alloca instead of MarshalAlloc.malloc.

fromBool :: Num a => Bool -> a
toBool :: Num a => a -> Bool

These two functions implement conversions between Haskell Boolean values and numeric
representations of Boolean values, where False is represented by 0 and True by any non-
zero value.

maybeNew :: (a -> IO (Ptr a)) -> (Maybe a -> IO (Ptr a))
Lift a function that marshals a value of type a to a function that marshals a value of type
Maybe a. In case, where the latter is Nothing, return Ptr.nullPtr (Section 5.4)

maybeWith :: (a -> (Ptr b -> IO c) -> IO c)-> (Maybe a -> (Ptr b -> IO c) -> IO c)
This function lifts a MarshalAlloc.alloca based marshalling function for a to Maybe a. It
marshals values Nothing in the same way as maybeNew.

maybePeek :: (Ptr a -> IO b) -> (Ptr a -> IO (Maybe b))
Given a function that marshals a value stored in the referenced memory area to a value of
type b, lift it to producing a value of type Maybe b. If the pointer is Ptr.nullPtr, produce
Nothing.

copyBytes :: Ptr a -> Ptr a -> Int -> IO ()
moveBytes :: Ptr a -> Ptr a -> Int -> IO ()

These two functions are Haskell variants of the standard C library routines memcpy() and
memmove(), respectively. As with their C counterparts, moveBytes allows the source and
destination array to overlap, whereas copyBytes does not allow overlapping areas. Both
functions take a reference to the destination area as their first, and a reference to the source
as their second argument—i.e., the argument order is as in an assignment.

23

C symbol Haskell symbol Constraint on concrete C type
HsChar Char integral type
HsInt Int signed integral type, ≥ 30 bit
HsInt8 Int8 signed integral type, 8 bit; int8 t if available
HsInt16 Int16 signed integral type, 16 bit; int16 t if available
HsInt32 Int32 signed integral type, 32 bit; int32 t if available
HsInt64 Int64 signed integral type, 64 bit; int64 t if available
HsWord8 Word8 unsigned integral type, 8 bit; uint8 t if available
HsWord16 Word16 unsigned integral type, 16 bit; uint16 t if available
HsWord32 Word32 unsigned integral type, 32 bit; uint32 t if available
HsWord64 Word64 unsigned integral type, 64 bit; uint64 t if available
HsFloat Float floating point type
HsDouble Double floating point type
HsBool Bool int
HsPtr Ptr a (void *)
HsFunPtr FunPtr a (void (*)(void))
HsStablePtr StablePtr a (void *)

Table 2: C Interface to Basic Haskell Types

6 C-Specific Marshalling

6.1 CForeign

The module CForeign combines the interfaces of all modules providing C-specific marshalling
support. The modules are CTypes, CString, and CError.

Every Haskell system that implements the FFI needs to provide a C header file named HsFFI.h
that defines the C symbols listed in Tables 2 and 3. Table 2 table lists symbols that represent
types together with the Haskell type that they represent and any constraints that are placed on the
concrete C types that implement these symbols. When a C type HsT represents a Haskell type T,
the occurrence of T in a foreign function declaration should be matched by HsT in the corresponding
C function prototype. Indeed, where the Haskell system translates Haskell to C code that invokes
foreign imported C routines, such prototypes need to be provided and included via the header
that can be specified in external entity strings for foreign C functions (cf. Section 4.1); otherwise,
the system behaviour is undefined. It is guaranteed that the Haskell value nullPtr is mapped to
(HsPtr) NULL in C and nullFunPtr is mapped to (HsFunPtr) NULL and vice versa.

Table 3 contains symbols characterising the range and precision of the types from Table 2.
Where available, the table states the corresponding Haskell values. All C symbols, with the
exception of HS FLOAT ROUND are constants that are suitable for use in #if preprocessing directives.
Note that there is only one rounding style (HS FLOAT ROUND) and one radix (HS FLOAT RADIX), as
this is all that is supported by ISO C [3].

Moreover, an implementation that does not support 64 bit integral types on the C side
should implement HsInt64 and HsWord64 as a structure. In this case, the bounds HS INT64 MIN,
HS INT64 MAX, and HS WORD64 MAX are undefined.

In addition, to the symbols from Table 2 and 3, the header HsFFI.h must also contain the
following prototypes:

void hs_init (int *argc, char **argv[]);
void hs_exit (void);
void hs_set_argv (int argc, char *argv[]);

void hs_perform_gc (void);

24 6 C-SPECIFIC MARSHALLING

CPP symbol Haskell value Description
HS CHAR MIN minBound :: Char
HS CHAR MAX maxBound :: Char
HS INT MIN minBound :: Int
HS INT MAX maxBound :: Int
HS INT8 MIN minBound :: Int8
HS INT8 MAX maxBound :: Int8
HS INT16 MIN minBound :: Int16
HS INT16 MAX maxBound :: Int16
HS INT32 MIN minBound :: Int32
HS INT32 MAX maxBound :: Int32
HS INT64 MIN minBound :: Int64
HS INT64 MAX maxBound :: Int64
HS WORD8 MAX maxBound :: Word8
HS WORD16 MAX maxBound :: Word16
HS WORD32 MAX maxBound :: Word32
HS WORD64 MAX maxBound :: Word64
HS FLOAT RADIX floatRadix :: Float
HS FLOAT ROUND n/a rounding style as per [3]
HS FLOAT EPSILON n/a difference between 1 and the

least value greater than 1 as
per [3]

HS DOUBLE EPSILON n/a (as above)
HS FLOAT DIG n/a number of decimal digits as

per [3]
HS DOUBLE DIG n/a (as above)
HS FLOAT MANT DIG floatDigits :: Float
HS DOUBLE MANT DIG floatDigits :: Double
HS FLOAT MIN n/a minimum floating point num-

ber as per [3]
HS DOUBLE MIN n/a (as above)
HS FLOAT MIN EXP fst . floatRange :: Float
HS DOUBLE MIN EXP fst . floatRange :: Double
HS FLOAT MIN 10 EXP n/a minimum decimal exponent

as per [3]
HS DOUBLE MIN 10 EXP n/a (as above)
HS FLOAT MAX n/a maximum floating point num-

ber as per [3]
HS DOUBLE MAX n/a (as above)
HS FLOAT MAX EXP snd . floatRange :: Float
HS DOUBLE MAX EXP snd . floatRange :: Double
HS FLOAT MAX 10 EXP n/a maximum decimal exponent

as per [3]
HS DOUBLE MAX 10 EXP n/a (as above)
HS BOOL FALSE False
HS BOOL TRUE True

Table 3: C Interface to Range and Precision of Basic Types

6.2 CTypes 25

void hs_free_stable_ptr (HsStablePtr sp);
void hs_free_fun_ptr (HsFunPtr fp);

These routines are useful for mixed language programs, where the main application is implemented
in a foreign language that accesses routines implemented in Haskell. The function hs init()
initialises the Haskell system and provides it with the available command line arguments. Upon
return, the arguments solely intended for the Haskell runtime system are removed (i.e., the values
that argc and argv point to may have changed). This function must be called during program
startup before any Haskell function is invoked; otherwise, the system behaviour is undefined.
Conversely, the Haskell system is deinitialised by a call to hs exit(). Multiple invocations of
hs init() are permitted, provided that they are followed by an equal number of calls to hs exit()
and that the first call to hs exit() is after the last call to hs init(). In addition to nested calls
to hs init(), the Haskell system may be de-initialised with hs exit() and be re-initialised with
hs init() at a later point in time. This ensures that repeated initialisation due to multiple
libraries being implemented in Haskell is covered.

The Haskell system will ignore the command line arguments passed to the second and any
following calls to hs init(). Moreover, hs init() may be called with NULL for both argc and
argv, signalling the absence of command line arguments.

The function hs set argv() sets the values returned by the functions getProgName and
getArgs of the module System defined in the Haskell 98 Library Report. This function may
only be invoked after hs init(). Moreover, if hs set argv() is called at all, this call must pre-
cede the first invocation of getProgName and getArgs. Note that the separation of hs init()
and hs set argv() is essential in cases where in addition to the Haskell system other libraries
that process command line arguments during initialisation are used.

The function hs perform gc() advises the Haskell storage manager to perform a garbage
collection, where the storage manager makes an effort to releases all unreachable objects. This
function must not be invoked from C functions that are imported unsafe into Haskell code nor
may it be used from a finalizer.

Finally, hs free stable ptr() and hs free fun ptr() are the C counterparts of the Haskell
functions freeStablePtr and freeHaskellFunPtr.

6.2 CTypes

The modules CTypes provide Haskell types that represent basic C types. They are needed to
accurately represent C function prototypes, and so, to access C library interfaces in Haskell.
The Haskell system is not required to represent those types exactly as C does, but the following
guarantees are provided concerning a Haskell type CT representing a C type t:

• If a C function prototype has t as an argument or result type, the use of CT in the cor-
responding position in a foreign declaration permits the Haskell program to access the full
range of values encoded by the C type; and conversely, any Haskell value for CT has a valid
representation in C.

• Storable.sizeOf (undefined :: CT) will yield the same value as sizeof (t) in C.

• Storable.alignment (undefined :: CT) matches the alignment constraint enforced by
the C implementation for t.

• Storable.peek and Storable.poke map all values of CT to the corresponding value of t
and vice versa.

• When an instance of Bounded is defined for CT, the values of minBound and maxBound coincide
with t MIN and t MAX in C.

• When an instance of Eq or Ord is defined for CT, the predicates defined by the type class
implement the same relation as the corresponding predicate in C on t.

26 6 C-SPECIFIC MARSHALLING

• When an instance of Num, Read, Integral, Fractional, Floating, RealFrac, or RealFloat
is defined for CT, the arithmetic operations defined by the type class implement the same
function as the corresponding arithmetic operations (if available) in C on t.

• When an instance of Bits is defined for CT, the bitwise operation defined by the type class
implement the same function as the corresponding bitwise operation in C on t.

All types exported by CTypes must be represented as newtypes of basic foreign types as defined
in Section 3.2 and the export must be abstract.

The module CTypes provides the following integral types, including instances for Eq, Ord, Num,
Read, Show, Enum, Storable, Bounded, Real, Integral, and Bits:

Haskell type Represented C type
CChar char
CSChar signed char
CUChar unsigned char
CShort short
CUShort unsigned short
CInt int
CUInt unsigned int
CLong long
CULong unsigned long
CLLong long long
CULLong unsigned long long

Moreover, it provides the following floating point types, including instances for Eq, Ord, Num, Read,
Show, Enum, Storable, Real, Fractional, Floating, RealFrac, and RealFloat:

Haskell type Represented C type
CFloat float
CDouble double
CLDouble long double

The module provides the following integral types, including instances for Eq, Ord, Num, Read, Show,
Enum, Storable, Bounded, Real, Integral, and Bits:

Haskell type Represented C type
CPtrdiff ptrdiff t
CSize size t
CWchar wchar t
CSigAtomic sig atomic t

Moreover, it provides the following numeric types, including instances for Eq, Ord, Num, Read,
Show, Enum, and Storable:

Haskell type Represented C type
CClock clock t
CTime time t

And finally, the following types, including instances for Eq and Storable, are provided:

Haskell type Represented C type
CFile FILE
CFpos fpos t
CJmpBuf jmp buf

6.3 CString 27

6.3 CString

The module CString provides routines marshalling Haskell into C strings and vice versa. The
marshalling converts each Haskell character, representing a Unicode code point, to one or more
bytes in a manner that, by default, is determined by the current locale. As a consequence, no
guarantees can be made about the relative length of a Haskell string and its corresponding C string,
and therefore, all routines provided by CString combine memory allocation and marshalling. The
translation between Unicode and the encoding of the current locale may be lossy. The function
charIsRepresentable identifies the characters that can be accurately translated; unrepresentable
characters are converted to ‘?’.
type CString = Ptr CChar

A C string is a reference to an array of C characters terminated by NUL.

type CStringLen = (Ptr CChar, Int)
In addition to NUL-terminated strings, the module CString also supports strings with ex-
plicit length information in bytes.

peekCString :: CString -> IO String
peekCStringLen :: CStringLen -> IO String

Marshal a C string to Haskell. There are two variants of the routine, one for each supported
string representation.

newCString :: String -> IO CString
newCStringLen :: String -> IO CStringLen

Allocate a memory area for a Haskell string and marshal the string into its C representation.
There are two variants of the routine, one for each supported string representation. The
memory area allocated by these routines may be deallocated using MarshalAlloc.free.

withCString :: String -> (CString -> IO a) -> IO a
withCStringLen :: String -> (CStringLen -> IO a) -> IO a

These two routines operate as newCString and newCStringLen, respectively, but handle
memory allocation and deallocation like MarshalAlloc.alloca (Section 5.8).

charIsRepresentable :: Char -> IO Bool
Determine whether the argument can be represented in the current locale.

Some C libraries require to ignore the Unicode capabilities of Haskell and treat values of
type Char as single byte characters. Hence, the module CString provides a variant of the above
marshalling routines that truncates character sets correspondingly. These functions should be
used with care, as a loss of information can occur.
castCharToCChar :: Char -> CChar
castCCharToChar :: CChar -> Char

These two functions cast Haskell characters to C characters and vice versa while ignoring
the Unicode encoding of the Haskell character. More precisely, only the first 256 character
points are preserved.

peekCAString :: CString -> IO String
peekCAStringLen :: CStringLen -> IO String
newCAString :: String -> IO CString
newCAStringLen :: String -> IO CStringLen
withCAString :: String -> (CString -> IO a) -> IO a
withCAStringLen :: String -> (CStringLen -> IO a) -> IO a

These functions for whole-string marshalling cast Haskell characters to C characters and vice
versa while ignoring the Unicode encoding of Haskell characters.

To simplify bindings to C libraries that use wchar t for character sets that cannot be encoded
in byte strings, the module CString also exports a variant of the above string marshalling routines
for wide characters—i.e., for the C wchar t type.2

2Note that if the platform defines STDC ISO 10646 then wchar t characters are Unicode code points, and
thus, the conversion between Haskell Char and CWchar is a simple cast. On other platforms, the translation is
locale-dependent, just as for CChar.

28 6 C-SPECIFIC MARSHALLING

type CWString = Ptr CWchar
type CWStringLen = (Ptr CWchar, Int)

Wide character strings in a NUL-terminated version and a variant with explicit length in-
formation in number of wide characters.

peekCWString :: CWString -> IO String
peekCWStringLen :: CWStringLen -> IO String
newCWString :: String -> IO CWString
newCWStringLen :: String -> IO CWStringLen
withCWString :: String -> (CWString -> IO a) -> IO a
withCWStringLen :: String -> (CWStringLen -> IO a) -> IO a

String marshalling for wide character strings. The interface is the same as for byte strings.

6.4 CError

The module CError facilitates C-specific error handling of errno. In Haskell, we represent values
of errno by

newtype Errno = Errno CInt

which has an instance for the type class Eq. The implementation of Errno is disclosed on purpose.
Different operating systems and/or C libraries often support different values of errno. This module
defines the common values, but due to the open definition of Errno users may add definitions which
are not predefined. The predefined values are the following:

eOK, e2BIG, eACCES, eADDRINUSE, eADDRNOTAVAIL, eADV, eAFNOSUPPORT, eAGAIN,
eALREADY, eBADF, eBADMSG, eBADRPC, eBUSY, eCHILD, eCOMM, eCONNABORTED,
eCONNREFUSED, eCONNRESET, eDEADLK, eDESTADDRREQ, eDIRTY, eDOM, eDQUOT,
eEXIST, eFAULT, eFBIG, eFTYPE, eHOSTDOWN, eHOSTUNREACH, eIDRM, eILSEQ,
eINPROGRESS, eINTR, eINVAL, eIO, eISCONN, eISDIR, eLOOP, eMFILE, eMLINK,
eMSGSIZE, eMULTIHOP, eNAMETOOLONG, eNETDOWN, eNETRESET, eNETUNREACH,
eNFILE, eNOBUFS, eNODATA, eNODEV, eNOENT, eNOEXEC, eNOLCK, eNOLINK,
eNOMEM, eNOMSG, eNONET, eNOPROTOOPT, eNOSPC, eNOSR, eNOSTR, eNOSYS,
eNOTBLK, eNOTCONN, eNOTDIR, eNOTEMPTY, eNOTSOCK, eNOTTY, eNXIO,
eOPNOTSUPP, ePERM, ePFNOSUPPORT, ePIPE, ePROCLIM, ePROCUNAVAIL,
ePROGMISMATCH, ePROGUNAVAIL, ePROTO, ePROTONOSUPPORT, ePROTOTYPE,
eRANGE, eREMCHG, eREMOTE, eROFS, eRPCMISMATCH, eRREMOTE, eSHUTDOWN,
eSOCKTNOSUPPORT, eSPIPE, eSRCH, eSRMNT, eSTALE, eTIME, eTIMEDOUT,
eTOOMANYREFS, eTXTBSY, eUSERS, eWOULDBLOCK, eXDEV
:: Errno

The meaning of these values corresponds to that of the C constants of the same name with the
leading ”e” converted to upper-case.

The module CError provides the following functions:

isValidErrno :: Errno -> Bool
Yield True if the given Errno value is valid on the system. This implies that the Eq instance
of Errno is also system dependent as it is only defined for valid values of Errno.

getErrno :: IO Errno
Get the current value of errno.

resetErrno :: IO ()
Reset errno to eOK.

errnoToIOError :: String -> Errno -> Maybe Handle -> Maybe String -> IOError
Compute a Haskell 98 I/O error based on the given Errno value. The first argument to the
function should specify the location where the error occurred and the third and fourth can
be used to specify a file handle and filename in the course of whose manipulation the error
occurred. This is optional information, which can be used to improve the accuracy of error
messages.

REFERENCES 29

throwErrno :: String -> IO a
Apply errnoToIOError to the value currently returned by getErrno. Its first argument
specifies the location—no extra information about a file handle or filename can be provided
in this case.

throwErrnoIf :: (a -> Bool) -> String -> IO a -> IO a
throwErrnoIf_ :: (a -> Bool) -> String -> IO a -> IO ()

Behave like throwErrno in case that the result of the IO action fulfils the predicate passed
as a first argument. The second variant discards the result after error handling.

throwErrnoIfRetry :: (a -> Bool) -> String -> IO a -> IO a
throwErrnoIfRetry_ :: (a -> Bool) -> String -> IO a -> IO ()

Like throwErrnoIf and throwErrnoIf_, but retry the IO action when it yields the error
code eINTR—this amounts to the standard retry loop for interrupted POSIX system calls.

throwErrnoIfMinus1 :: Num a => String -> IO a -> IO a
throwErrnoIfMinus1_ :: Num a => String -> IO a -> IO ()

Instantiate throwErrnoIf and throwErrnoIf_ with the predicate (== -1).

throwErrnoIfMinus1Retry :: Num a => String -> IO a -> IO a
throwErrnoIfMinus1Retry_ :: Num a => String -> IO a -> IO ()

Instantiate throwErrnoIfRetry and throwErrnoIfRetry_ with the predicate (== -1).

throwErrnoIfNull :: String -> IO (Ptr a) -> IO (Ptr a)
throwErrnoIfNullRetry :: String -> IO (Ptr a) -> IO (Ptr a)

Instantiate throwErrnoIf and throwErrnoIfRetry with the predicate (== Ptr.nullPtr).

References

[1] Hans-J. Boehm. Destructors, finalizers, and synchronization. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 262–272.
ACM Press, 2003.

[2] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The Java Series.
Addison-Wesley, 1997.

[3] International Standard ISO/IEC. Programming languages – C. 9899:1999 (E).

[4] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall,
second edition, 1988.

[5] Sheng Liang. The Java Native Interface: Programmer’s Guide and Specification. Addison
Wesley, 1999.

[6] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,
1996.

[7] Simon Peyton Jones et al. Haskell 98 language and libraries: the revised report. Journal of
Functional Programming, 13(1), 2003.

