Handling Exceptions in Haskell

Alastair Reid
Yale University
Department of Computer Science
New Haven, CT 06520
reid-alastair@cs.yale.edu

January 19, 1999

Abstract

Using a language without exception handling is like driving a car with no brakes and
no seatbelt — things work fine until something goes wrong. You also learn to drive
rather carefully.

This paper describes an exception handling extension to the Haskell lazy functional
language. The implementation turned out to be very easy but we had problems finding
a viable semantics for our system. The resulting semantics is a compromise between
theoretical beauty and practical utility.

1 Introduction

Haskell is an ivory tower language: full of lofty ideas, built on solid semantic foundations,
praised by grey-bearded professors and about as much use in the real world as a chocolate
teapot. For Haskell to emerge from the ivory tower, it must be possible to write the kinds
of programs that less idealistic programmers can write in C, Java, Ada and other useful
languages: programs that interact with the real world in interesting ways (using graphics,
GUIs, databases, etc) and which are robust enough to keep running even when things go
wrong.

Recent work on Haskell has dealt with the problem of interacting with the real world:
Haskell’s IO monad [6, 3] provided an extensible framework for interacting with the real
world; GHC’s ccall extension [6] made it possible to use libraries written in C; GHC’s for-
eign pointers [11] made it possible to deallocate C objects without compromising laziness;
Hugs-GHC’s GreenCard [9] made it easy to use standard C libraries; the Hugs-GHC stan-
dard libraries [7] added support for fixed size integers facilitating access to C libraries that
use them.

This increased ability to interact with the real world is a double-edged sword: our programs
may achieve wondrous things when they work correctly; but they can wreak untold havoc
when they fail. For example: if a program fails halfway through modifying a database, it
might corrupt the database; if a program fails while interacting with the user, it might leave
a confused mess of windows on the screen; if a program fails while controlling a robot, the
robot might crash into walls or run over the programmer’s foot; if a Haskell interpreter fails
while executing a user’s program, it might abort the interpreter instead of printing an error
message and prompting for the next command. Given that any interesting program can go
wrong, the only solution is to provide mechanisms for dealing with failure when it happens
and to educate programmers to use them.

Haskell’s IO monad [3] recognises the importance of exception handling providing a simple
mechanism for raising and catching exceptions within the IO monad. Careful use makes
Haskell programs much more robust but exceptions can only be raised within the IO monad
— so0 there is no way to catch exceptions like calls to the error function, division by zero or
pattern match failure which occur within “pure” code. This paper describes an extension
which lets programs catch “internal exceptions” (e.g. calls to the error function, pattern
match failure and division by zero); the essential but different task of catching “external
exceptions” (e.g. interrupts and timeouts) is discussed in a companion paper [12] and outlined
in Section 5.

The main difficulty in extending Haskell’s exception handling capabilities is to avoid com-
promising Haskell’s main strengths: lazy evaluation, type safety, support for equational rea-
soning and its amenability to both manual and automatic transformation. Section 2 recalls a
standard exception handling mechanism (the exception monad and the call-by-name monad
translation) and Section 3 describes an efficient implementation of this mechanism. This is
the easy part of adding exception handling and is essentially a reprise and update of Dornan
and Hammond’s work [1]. Section 4 points out a significant flaw in this approach: even
though this mechanism preserves laziness, type safety and referential transparency, it ren-
ders many common transformations invalid and apparently makes reasoning about Haskell
programs difficult. Section 4 shows that this problem can be resolved with a small change in
the design and a big change in the way we reason about exception producing programs. The
development in the previous sections ignores the interaction between exception handling and
two other exception-like features of Haskell: Section 5 describes these features and suggests
a unified design.

2 The Exception Monad

Wadler [13] describes how ordinary programmers can add exception handling to a lazy pro-
gram using the exception monad and the call by name monad translation. The exception
monad and the call by name monad translation are shown in figures 1 and 2. We have
extended Wadler’s versions in two small ways: we use a String to hold error messages; and
we cover the full Core Haskell language. In the rules for translating terms, we use x, x;, ...
for variables, e, e;, ... for expressions, C' for a constructor of arity m, k for a constant, op

for a strict primitive operation of arity m and op' is the same as op except that it raises
an exception whenever op returns L. The Haskell report [8] gives the necessary rules for
transforming Haskell programs into Core Haskell. Figure 3 shows the monad translation in
action on a user-defined function average and a primitive operation divide.

As well as being able to raise exceptions (via error, pattern match failure or primitive
operations), we need a way to catch exceptions. Wadler provides the biased-choice operator

? :: Ea->Ea->Ea

which chooses the first of two possible values that is well defined. Since we distinguish
between different exceptions, we change the type slightly to allow the second argument to
access the exception raised by the first argument; and we change the name to reflect a
similarity to Haskell 1.4’s catch function.

catchException :: E a -> (String -> E a) -> E a

(In fact, Section 4 explains that we need to change this type even more.)

This translation has the following desirable properties: it preserves laziness; it preserves
type safety; it preserves confluence and termination; and it preserves referential transparency.
Wadler’s approach has some problems, most of which stem from the fact that we are encoding
exception handling in Haskell rather than making it part of the language.

1. While the transformation is simple to apply, it is extremely tedious and error prone
which makes it hard to have any confidence in the (allegedly increased) reliability of the
transformed system. The situation is made worse by the fact that one must manually
desugar all of Haskell’s syntactic extensions (nested patterns, list comprehensions, etc)

thus losing one of Haskell’s primary features.

2. This transformation has to be applied to the entire program including the libraries and
the standard Prelude. This requires access to the source code of the entire system and,
since the Prelude is not just ordinary Haskell code, requires a lot of cooperation from
the compiler writer.

3. Adding preconditions to the primitive operations is hard because, for example, it is
hard to check for arithmetic overflow without causing overflow yourself and because
the preconditions vary from one piece of hardware to the next.

4. Wrapping every data constructor in a Value constructor is expensive: almost every-
thing becomes twice as big and twice as slow (we expand on this in the next section).

5. Standard program transformations change the meaning of program which raise excep-
tions. For example, replacing a + b by b + a changes the result of this expression

let { a = error "a"; b = error "b" } in a + b

data E a = Error (E String) | Value a

instance Monad E where
Error s >>= k = Error s
Value a >>= k k a
return a Value a

Figure 1: The Exception Monad

e = 2z

Az —e)f = return (\z — ef)

(e EQ)T = el ‘apply‘ eyf
where apply t u=t>>=Af = fu
(Cer...ep)' = return (Ce ... e,h)
(case e of {C 11:,7~L—)¢9,1;_—)¢9,2})Jr = el >>= Az — case x of{C z ... mm—)elT;_—)EQT}
k' = returnk
(oper ... en)t = el >>=dz; = .. et >>=Aey = opl ... 2,
(error s)I = Error s

Figure 2: The Call By Name Translation for Core Haskell

average
==>

average

where

average ::

average ::
divide ::
divide x y = x >>= \ x’ -> y >>=\ y’ -> divide’ x y

divide’
divide’

[Float] -> Float
\ xs -> (/) (sum xs) (length xs)

E (E [Float] -> E Float)
return (\xs -> divide (sum ‘apply‘ xs) (length ‘apply‘ xs))

E Float -> E Float -> E Float

x 0 = Error (Value "division by 0")
X y = return (x / y)

Figure 3: The Call by Name Translation in Action

6. This transformation provides no help with infinite loops.

Problems 1, 2 and 3 alone are enough to render this approach infeasible but can be solved
by making exception handling part of the language and applying the transformation au-
tomatically. Problem 4 can be largely solved by careful implementation and is discussed
in Section 3. Problem 5 is a major problem requiring a certain amount of compromise of
theoretical beauty for practical utility and is discussed in Section 4. Problem 6 is a major
thorn in our side: we’re forced to take a pragmatic approach and treat these as resource
limits (the limited resource being the patience or lifetime of the user!).

3 An Efficient Implementation

We could implement exception handling as a direct source-to-source transformation (plus
some special treatment of primitive operations) using the monad and translation given in
Section 2. We chose not to do so because the transformation is very expensive: everything
becomes twice as big and twice as slow.

For example, using the STG machine on a 32-bit architecture, a Cons cell increases in size
from 12 bytes (1 tag word plus 2 pointers) to 20 bytes (a Cons cell plus a Value cell which
contains 1 tag word and 1 pointer) and an Int cell increases from 8 bytes to 16 bytes. Worse,
all access to the fields of a data constructor requires two case analyses instead of one; all
function applications require a case analysis and all primops need an error check.

This overhead can be reduced somewhat by adding a new constructor to every data type.
For example, Bool and List could be defined as follows:

data Bool
data List a

Error_Bool Error_String | False | True
Error_List Error_String | Nil | Cons a (List a)

This eliminates the space overhead on constructors and eliminates the time overhead on case
analyses, but the following problems remain:

e [t’s not possible to have a polymorphic error function: we must use a distinct error
function for each type or we must overload error and modify the type of every poly-
morphic function which raises a polymorphic error.

e This will not work for Ints or functions since these are not ordinary datatypes.

e Raising an exception is relatively slow: for every case expression being executed we
have to execute something like this:

case e of

{ Error_Bool err -> Error_List err
; False -> ..

; True -> ...

}

These extra case alternatives are particularily galling because they are so trivial: on
detecting an error value, they just reraise the same error value.

Our solution is to extend the abstract machine with direct support for exception handling.
Specifically, the catchException function pushes a special “exception handler frame” onto
the stack and the error function unwinds the stack down to the topmost “exception handler
frame” and invokes the associated exception handler.

On a naive graph reduction machine, our job would now be done but the STG machine (on
which we implemented our proposal) delays updating a thunk until after the thunk has been
reduced to weak head normal form. Therefore, we must perform all those pending updates
as we unwind the stack.

The STG machine maintains a list of pending updates which it threads through the stack.
As the STG machine enters an updatable thunk, it adds the thunk to the list and as it
returns the value of a thunk, it updates the thunk with its value and removes the thunk
from the head of the list. To add exceptions to the STG machine, we add exception handler
frames to the update list. This requires the following changes:

e When catchException e h is executed, we add an exception handler to the “update
list.”

e When error err is executed, we search down the update list for the topmost exception
handler updating each pending update with an error thunk which will reraise err if
the thunk is reentered. We then apply the topmost exception handler to err.

e When returning a constructor or a partially applied function (i.e. a value that is in
weak head normal form), the STG machine already tests whether the top of the stack
is a return address or an update frame. To this, we add a second test to check for an
exception handler frame. If the top of the stack is a return address, the STG machine
jumps to that address; if the top of the stack is an update frame, the STG machine
performs the update, pops the update frame and tries again; and if the top of the stack
is an exception handler, the STG machine pops the exception handler and tries again.

The second test looks like it might be expensive but, fortunately, we are able to exploit
an optimisation already present in the STG machine which is designed to make the
first test cheap. The key idea is to make update frames look just like return addresses.
That is, the topmost word of every update frame is the address of code which will
perform an update when executed. With this small change, there is no need to test
whether the top of the stack is a return address or not: we can just jump to the address
without a test. This same optimisation works for exception handlers too: so we incur
no extra cost when we add exception handling.

Note that we do not have to deal with return addresses (which are pushed by case ex-
pressions); we only have to deal with pending updates. This avoids most of the overhead
associated with the simple source-to-source transformation.

The behaviour of the modified system is illustrated in figure 4 which shows the steps involved
in evaluating the expression

catchException (error "a" + 1) (const 0)

Figures 4i-4v show how the STG machine unwinds the spine of the graph onto the stack
and constructs the update list. Figure 4i shows the initial state of the machine: the stack
contains a pointer to the representation of the expression to be evaluated (which is stored on
the heap) and a STOP frame (which is the head of the update list). (The STG paper does not
mention STOP frames but they were present in the implementation after all, the last “real”
update frame on the update list had to point to something!) Figure 4ii shows how an update
frame is added to the update list when the first thunk is entered. Figure 4iii shows how
an exception handler frame is added to the update list when catchException is executed.
Note that the exception handler frame contains a pointer to the exception handler whereas
an update frame contains a pointer to the updatee. Figure 4iv shows another update frame
being added to the update list. Figure 4v shows the + primitive operation pushing a return
address ret_+ on the stack and evaluating its first argument. Since its first argument is an
error, this triggers the exception handling mechanism.

Figures 4vi-4x show how the STG machine propagates and recovers from errors. Figure 4vi
shows the topmost pending update being updated with an indirection to an error thunk.
Figure 4vii shows the exception handler frame being popped off the stack in preparation for
applying the handler to the error message "a". Figures 4viii and 4ix show the exception
handler const 0 being applied to the error message "a". Finally, figure 4x shows the final
updatee being updated with the result of the exception handler leaving just the result 0 and
the STOP frame on the stack.

4 A Problem and Two Solutions

In the previous section, we observed that the translation broke simple transformations. This
section expands on the problem and describes two solutions: the first one is obvious but
doesn’t quite work, the second is less obvious but works.

The problem is that standard identities like the following hold in an untransformed program
but do not hold in a transformed program. (This problem is easily verified using a = error
"a" and b = error "b".)

Arithmetic identities:
a+b = b+a

axb = bxa

ax1l = a

ii)

i)

iv)

v)

é STOP

STOP

/i‘ AP2 ‘catch..

[+—=eonst [,

‘[ar2 [+]

i
o

catch. .

/i‘ AP2 ‘catch..

P |IC|O|C

Vi)

vii)

viii)

ix)

X)

(‘STG‘D /i‘ AP2 ‘catch ‘ j const ‘ ‘ ‘
C e — |
- ¢ | ND d@
¢ error -
STOP i const
[+— |

Figure 4: Catching Exceptions in the STG machine

(e /3\ AP2 | catch. . |
U] i
Trel] 4]
¢ error -
sToP

Rearrangement of non-failing case:

case a of (al,a2) -> case b of (b1,b2) -> (al + bl,a2 + b2)
= case b of (bl,b2) -> case a of (al,a2) -> (al +bl,a2 + b2)

The problem with these “reordering transformations” is that they change the dependencies
within the program and so change which exception a program will raise. Since reliability
(and, hence, exception handling) is essential for real world use, the obvious solution is to
outlaw such transformations. This is unpalatable for several reasons:

1. One of the principal arguments for using lazy evaluation is that it supports trans-
formations such as those above. This allows programs to be developed, explained or
even proved correct by transforming an inefficient specification into an efficient imple-
mentation. Losing this ability to freely transform programs would throw away one of
Haskell’s main strengths.

2. Simply outlawing reordering transformations is not enough to make exception han-
dling predictable. We also have to choose and clearly document the present order of
evaluation in primitive operations such as (+) :: Int -> Int -> Int, the Haskell
Prelude and standard libraries, and any non-standard libraries we may obtain from a
third party.

It seems unreasonable to insist on this level of documentation or to expect normal
programmers to make use of it. Indeed, while we know of many libraries (for other
languages) which list which exceptions a function may raise, none provide detailed
documentation of exactly what circumstances cause each exception to be raised and
how these exceptions are prioritised.

3. Optimising Haskell compilers use transformations like the above to automatically im-
prove the performance of Haskell programs. If we forbid these transformations, or
attach side conditions to their use, optimising compilers become much more limited in
scope. In particular, they would have great trouble exploiting the effects of strictness
analysis — the worker-wrapper transformation is no longer valid.

A second solution is to accept that programmers will not be able to reason about precisely
which exception a program will raise and provide a new semantics (or new reasoning tools

there is little practical difference) which accepts a certain degree of non-determinism. We
believe this is acceptable to programmers because programmers using languages which sup-
port exception handling seem willing to accept imprecise statements as to which exceptions
a function might raise in return for more concise documentation and more implementation
freedom.

The problem in making exception handling non-deterministic is in controlling the amount
of non-determinism: if we allow too much non-determinism, the semantics will confuse pro-
grams that the programmer wishes to keep distinct; if we allow too little non-determinism,

then we must severely restrict exception handling and/or limit the set of transformations
which we consider valid. To resolve this problem, we borrow an idea from Hughes and
O’Donnell’s seminal paper [5] on reasoning about non-deterministic functional programs.
Their main idea was to separate deterministic parts of their programs from non-deterministic
parts of their programs and to restrict non-determinism to the top-level of their programs.

Applying this idea to exception handling, we take care to keep (non-deterministic) exception
handling code separate from normal (deterministic) code. This requires just one change to
the implementation described in Section 3: we restrict catchException to the IO monad by
giving it the more restrictive type

catchException :: I0 a -> (String -> I0 a) -> I0 a

By limiting exception catching to the 10 monad, we are able to use non-determinism in
describing exception handling without the non-determinism contaminating the semantics of
“pure” parts of the program. The next two sections describe how we use non-determinism
when reasoning about exception handling.

4.1 Non-deterministic exceptions: a first attempt

For a long time, we thought the way to make exception handling non-deterministic was to
take a second idea from Hughes and O’Donnell [5]:

1. They introduce a new abstract data type {a} whose elements are sets of values of
type o but whose intended implementation is a single representative element chosen
non-deterministically from the set it represents.

2. Non-deterministic expressions are clearly distinguished by their type: a non-deterministic
Int expression is given type {Int}.

3. The operations on sets are carefully designed so that non-determinism cannot leak
out into deterministic parts of the program. All operations on non-deterministic sets
generate non-deterministic sets as results. In particular, they explicitly do not provide
a function like

choose :: {a} —> a

Rather, non-deterministic programs (i.e. expressions of type {a}) can only be run at
the “top-level” of the program.

Applying this idea to our semantics, we replace the error string with a set of error strings.
That is, we change the exception type E described in Section 2 to

data E a = Errors {E String} | Value a

10

and changed the exception monad accordingly. In particular, we change primitive operations
to return the union of all exceptional arguments instead of just returning the first exceptional
argument.

This change restores the commutativity of integer addition but it does not restore the validity
of all the other transformations. In particular, the case of unfailing case transformation given
above still does not hold. With a little ingenuity and a lot of changes we were able to restore
the validity of the case of unfailing case transformation as well, but the resulting system
suffered from two fatal flaws:

1. it is hard to understand the resulting system; and

2. it is harder yet to imagine proving the resulting system correct w.r.t. a set of transfor-
mations.

We therefore reject this approach as being too hard to understand and too hard to validate
whether it could account for all the non-determinism associated with a set of transformations.

4.2 Non-deterministic exceptions: a second attempt

The fundamental problem with the previous approach is that it does not directly mention
the transformations that we want to preserve. So how are we meant to prove that they
are preserved; and how are we meant to tweak the system if we want new transformations
to hold? We fix this problem by making the transformations used in the compiler (and by
library writers) explicit in the semantics.

Let us suppose that we have a relation |— which captures all the transformations that the
compiler might apply (that is, el 1— €2 if the compiler might transform el into e2 during
compilation). Then the set of values that an expression may return is N'D[e].

NDle] = {D[e''] | e L—* ¢'}

where D[e] is the normal (deterministic!) value of e and L—* is the reflexive, transitive
closure of 1—. (The application of the monad translation { to the transformed expression ¢’
reflects the fact that we implement the monad translation in our abstract machine and so it
is applied after the compiler has done its job.)

If Dle] # L, then N'D[e] will, of course, contain a single value (assuming that 1— respects
the Haskell semantics). But if D[e] = L, then N'D[e] may contain multiple values depending
on e and |—. To see how the choice of 1— affects the semantics, we consider three possible
choices of transformation.

1. If the compiler does no optimisation, then |— is the identity relation and ND[e]
reduces to

ND[e] = {D[e"]}

We can reason exactly about what exceptions will be raised but we have to be careful
when transforming programs.

11

2. At the other extreme, if we have no idea what transformations the compiler (or library
writers) perform, we have to assume they perform any valid transformation. That is,
el 1— e2iff D[el] = D[e2]. This is always a safe choice, but it includes such dubious
transformations as:

error "a" 1— error "b"

error "a" 1— let x = x in X

which real compilers are unlikely to use.

3. Finally, if we know that the compiler performs (only) the unfailing case of case trans-
formation given earlier, we choose |— accordingly and we have

NDlcase a of (al,a2) -> case b of (b1,02) —> (al + bl,a2 + b2)]
= ND[case b of (bl,b2) -> case a of (al,a2) -> (al +bl,a2 + b2)]

The idea then is to choose a relation | — which includes the transformations that the compiler
and library writers typically use but excludes those that are valid but unlikely, such as
changing error messages or replacing error messages with infinite loops.

There is just one fly in the ointment: many standard transformations allow a program which
raises an error to be transformed into a program which does not terminate and so we are
forced to confuse non-termination with raising an exception in our semantics. This is not
particularily satisfactory but it seems to be the best we can do — and it can be dealt with
by adding facilities to catch interrupts or timeouts as discussed in the next section.

5 Unification

The development in the previous sections ignored the interaction between exception handling
and two other exception-like features of Haskell. This section describes these features and
suggests a unified design which combines all three. Only the first has been implemented so
far.

Haskell 1.4 [8] introduced a restricted form of exception handling which was labelled “error
catching”. This was a very conservative design which restricted both raising and catching of
exceptions to the IO monad. One can view our exception handling features as an extension
of “error catching” in which exceptions can be raised outside of the IO monad.

The “error catching” operations provided in Haskell 1.4 are as follows:

catch :: I0 a -> (IQError -> I0 a) -> I0 a
fail :: IOError -> 10 a

12

In addition, many input/output operations in the IO monad call fail in response to error
situations in the execution environment. For example, writeFile “fails” if the named file
does not exist or is not writable.

To write robust programs, one must catch both Haskell 1.4 errors and our exceptions by
writing something like:

catchException (catch e hl) h2

If we assume that most programmers will want to catch both kinds of exceptions, it makes
sense to combine catch and catchException into a single operation which catches either
kind of error. The resulting system looks like this:

catch :: I0 a -> (IQError -> I0 a) -> I0 a
fail :: IOError -> I0 a
raise :: IOError -> a

(We also need to extend the IOError data type; this is discussed later in this section.)
Merging these operations doesn’t just simplify life for the programmer, it also simplifies the
implementation since our exception handling mechanism can be used to efficiently implement
Haskell 1.4’s error catching operations.

We recently extended the STG machine with an interrupt catching mechanism [12]. In a
sequential Haskell system, we add this function

catchInterrupt :: I0 a -> I0 a -> I0 a

The semantics is as follows: catchInterrupt e h executes e; if e returns a value without
being interrupted, catchInterrupt e h returns the value returned by e; if an interrupt
occurs while executing e, then h is executed.

Again, programmers are likely to want to catch both exceptions and interrupts and so we
extend catch and IOError accordingly. There is just one subtlety: when propagating ex-
ceptions, we overwrite pending updatees with error values; when interrupting programs, we
overwrite pending updates with reverted blackholes (this is the main subject of our other
paper [12]). The reason for this difference is that if an internal exception is raised when
executing an expression e, that expression will always raise an exception but if an ezternal
exception (such as an interrupt) is raised when executing e, it is entirely possible that no
external exception would be raised the next time e is evaluated.

Finally, Haskell 1.4’s I0Error type needs to modified to let us encode errors, internal excep-
tions and external exceptions to the programmer. We have not explored this change as yet
because it is not yet clear what programmers will want to do with I0Errors. If all they want
to do is print them on the screen, it is sufficient to provide a function to convert IOErrors
to Strings; if they want to detect distinct exceptions and respond to them in different ways,
will they want to make a clear distinction between errors, internal exceptions and external
exceptions or would such a distinction merely get in the programmer’s way?

13

6 Related Work

There have been three previous attempts to add exception handling to lazy functional lan-
guages. Gerald [10] was an early attempt to add exception handling to a lazy language —
but it has no clear semantics and seems to be limited to untyped languages. Wadler’s excep-
tion monad and call by name translation [13] is semantically sound (indeed, it is the basis
for our semantics!) and requires no language extensions but, as we discussed in Section 2, it
is tedious to apply and renders programs almost unreadable. Dornan and Hammond [1, 2]
proposed the same semantics that we describe in Section 2, implemented their proposal
and proved that the semantics is sound (confluent and consistent). The primary difference
between their work and ours is our observation that soundness is not sufficient: adding ex-
ception handling breaks a large number of transformations. Our solution is to limit exception
catching to the IO monad (where less transformations are valid) and to use non-determinism
to describe the semantics of programs that use exception handling.

Finally, Henderson [4] independently proposed using Hughes and O’Donnell’s non-deterministic
sets when catching exceptions. A key difference is that instead of providing catchException
in the I0 monad, he provides the following function.

ndset_catch :: a -> Either {String} a

The problem with this (more flexible) proposal is that it allows non-determinism to contam-
inate the pure parts of the system with non-determinism as well: we cannot predict whether
this pure expression will terminate or not.

let { a = a; b = error "b" } in (seq (ndset_catch (at+b)) "Mystery")

7 Discussion

It is relatively straightforward to add exception handling to a Haskell implementation; it
is much harder to design a language extension which preserves the essential properties of a
lazy language. This paper describes how to do both. The implementation is simple, efficient
and obvious; the design is rather subtle and requires some care to produce a design which
balances pragmatic concerns (we have to be able to catch exceptions) with more theoretical
concerns (we have to be able to reason about our programs).

Acknowledgments: This work was carried out while working with Simon Peyton Jones,
Simon Marlow and Sigbjorn Finne (all at Glasgow University) to reimplement the STG
machine. We benefited from many conversations with them and from being able to implement
our ideas in a state of the art Haskell implementation. Thanks too, to Paul Hudak and John
Peterson (both at Yale) for comments on this paper and to Paul especially for the Dark
Shadows conversation which inspired section 4.2.

14

References

1]

[10]

[11]

[12]

[13]

C. Dornan and K. Hammond. Exception handling in lazy functional languages. Research
Report CSC 90/R5, Glasgow University, Department of Computing Science, January
1990.

K. Hammond. Exception handling in a parallel functional language. Research Report
CSC 89/R17, Glasgow University, Department of Computing Science, August 1989.

K. Hammond and A. Gordon. Monadic I/O in Haskell 1.3. In Proceedings of the 1995
Haskell Workshop, pages 50-68, La Jolla, California, June 1995.

F. Henderson. electronic mail to the Haskell mailing list. June 1998.

R. Hughes and J. O'Donnell. Expressing and reasoning about non-deterministic func-
tional programs. In K. Davis and R. Hughes, editors, Glasgow Functional Programming
Workshop, Workshops in Computing, pages 308 328. Springer Verlag, 1989.

S. P. Jones and P. Wadler. Imperative functional programming. In 20th POPL, pages
71 84, Charleston, Jan 1993. ACM.

S. Marlow and A. Reid. The Hugs-GHC libraries. Hugs compiler documentation, June
1998.

J. Peterson and K. Hammond (editors). Report on the Programming Language Haskell
1.4, A Non-strict Purely Functional Language. Research Report YALEU/DCS/RR-
1106, Yale University, Department of Computer Science, April 1997.

S. Peyton Jones, T. Nordin, and A. Reid. Greencard: a foreign-language interface for
Haskell. In Proc Haskell Workshop, Amsterdam, June 1997.

A. Reeves, D. Harrison, A. Sinclair, and P. Williamson. Gerald: An exceptional lazy
functional programming language. In K. Davis and R. Hughes, editors, Glasgow Func-
tional Programming Workshop, Workshops in Computing, pages 371 390. Springer Ver-
lag, 1989.

A. Reid. Malloc pointers and stable pointers: Improving Haskell’s foreign language
interface. draft proceedings of Glasgow Functional Programming Workshop, July 1994.

A. Reid. Putting the Spine back in the Spineless Tagless G-machine: an implementation
of revertible blackholes. Submitted to IFL’98, August 1998.

P. Wadler. Comprehending monads. In Proc ACM Conference on Lisp and Functional
Programming, Nice, June 1990. ACM.

15

