
Handling Exceptions in HaskellAlastair ReidYale UniversityDepartment of Computer ScienceNew Haven, CT 06520reid-alastair@cs.yale.eduJanuary 19, 1999AbstractUsing a language without exception handling is like driving a car with no brakes andno seatbelt | things work �ne until something goes wrong. You also learn to driverather carefully.This paper describes an exception handling extension to the Haskell lazy functionallanguage. The implementation turned out to be very easy but we had problems �ndinga viable semantics for our system. The resulting semantics is a compromise betweentheoretical beauty and practical utility.1 IntroductionHaskell is an ivory tower language: full of lofty ideas, built on solid semantic foundations,praised by grey-bearded professors and about as much use in the real world as a chocolateteapot. For Haskell to emerge from the ivory tower, it must be possible to write the kindsof programs that less idealistic programmers can write in C, Java, Ada and other usefullanguages: programs that interact with the real world in interesting ways (using graphics,GUIs, databases, etc) and which are robust enough to keep running even when things gowrong.Recent work on Haskell has dealt with the problem of interacting with the real world:Haskell's IO monad [6, 3] provided an extensible framework for interacting with the realworld; GHC's ccall extension [6] made it possible to use libraries written in C; GHC's for-eign pointers [11] made it possible to deallocate C objects without compromising laziness;Hugs-GHC's GreenCard [9] made it easy to use standard C libraries; the Hugs-GHC stan-dard libraries [7] added support for �xed size integers facilitating access to C libraries thatuse them. 1

This increased ability to interact with the real world is a double-edged sword: our programsmay achieve wondrous things when they work correctly; but they can wreak untold havocwhen they fail. For example: if a program fails halfway through modifying a database, itmight corrupt the database; if a program fails while interacting with the user, it might leavea confused mess of windows on the screen; if a program fails while controlling a robot, therobot might crash into walls or run over the programmer's foot; if a Haskell interpreter failswhile executing a user's program, it might abort the interpreter instead of printing an errormessage and prompting for the next command. Given that any interesting program can gowrong, the only solution is to provide mechanisms for dealing with failure when it happensand to educate programmers to use them.Haskell's IO monad [3] recognises the importance of exception handling | providing a simplemechanism for raising and catching exceptions within the IO monad. Careful use makesHaskell programs much more robust but exceptions can only be raised within the IO monad| so there is no way to catch exceptions like calls to the error function, division by zero orpattern match failure which occur within \pure" code. This paper describes an extensionwhich lets programs catch \internal exceptions" (e.g. calls to the error function, patternmatch failure and division by zero); the essential but di�erent task of catching \externalexceptions" (e.g. interrupts and timeouts) is discussed in a companion paper [12] and outlinedin Section 5.The main di�culty in extending Haskell's exception handling capabilities is to avoid com-promising Haskell's main strengths: lazy evaluation, type safety, support for equational rea-soning and its amenability to both manual and automatic transformation. Section 2 recalls astandard exception handling mechanism (the exception monad and the call-by-name monadtranslation) and Section 3 describes an e�cient implementation of this mechanism. This isthe easy part of adding exception handling and is essentially a reprise and update of Dornanand Hammond's work [1]. Section 4 points out a signi�cant aw in this approach: eventhough this mechanism preserves laziness, type safety and referential transparency, it ren-ders many common transformations invalid and apparently makes reasoning about Haskellprograms di�cult. Section 4 shows that this problem can be resolved with a small change inthe design and a big change in the way we reason about exception producing programs. Thedevelopment in the previous sections ignores the interaction between exception handling andtwo other exception-like features of Haskell: Section 5 describes these features and suggestsa uni�ed design.2 The Exception MonadWadler [13] describes how ordinary programmers can add exception handling to a lazy pro-gram using the exception monad and the call by name monad translation. The exceptionmonad and the call by name monad translation are shown in �gures 1 and 2. We haveextended Wadler's versions in two small ways: we use a String to hold error messages; andwe cover the full Core Haskell language. In the rules for translating terms, we use x, xi, . . .for variables, e, ei, . . . for expressions, C for a constructor of arity m, k for a constant, op2

for a strict primitive operation of arity m and opy is the same as op except that it raisesan exception whenever op returns ?. The Haskell report [8] gives the necessary rules fortransforming Haskell programs into Core Haskell. Figure 3 shows the monad translation inaction on a user-de�ned function average and a primitive operation divide.As well as being able to raise exceptions (via error, pattern match failure or primitiveoperations), we need a way to catch exceptions. Wadler provides the biased-choice operator? :: E a -> E a -> E awhich chooses the �rst of two possible values that is well de�ned. Since we distinguishbetween di�erent exceptions, we change the type slightly to allow the second argument toaccess the exception raised by the �rst argument; and we change the name to reect asimilarity to Haskell 1.4's catch function.catchException :: E a -> (String -> E a) -> E a(In fact, Section 4 explains that we need to change this type even more.)This translation has the following desirable properties: it preserves laziness; it preservestype safety; it preserves conuence and termination; and it preserves referential transparency.Wadler's approach has some problems, most of which stem from the fact that we are encodingexception handling in Haskell rather than making it part of the language.1. While the transformation is simple to apply, it is extremely tedious and error prone |which makes it hard to have any con�dence in the (allegedly increased) reliability of thetransformed system. The situation is made worse by the fact that one must manuallydesugar all of Haskell's syntactic extensions (nested patterns, list comprehensions, etc)| thus losing one of Haskell's primary features.2. This transformation has to be applied to the entire program including the libraries andthe standard Prelude. This requires access to the source code of the entire system and,since the Prelude is not just ordinary Haskell code, requires a lot of cooperation fromthe compiler writer.3. Adding preconditions to the primitive operations is hard because, for example, it ishard to check for arithmetic overow without causing overow yourself and becausethe preconditions vary from one piece of hardware to the next.4. Wrapping every data constructor in a Value constructor is expensive: almost every-thing becomes twice as big and twice as slow (we expand on this in the next section).5. Standard program transformations change the meaning of program which raise excep-tions. For example, replacing a+ b by b+ a changes the result of this expressionlet { a = error "a"; b = error "b" } in a + b3

data E a = Error (E String) | Value ainstance Monad E whereError s >>= k = Error sValue a >>= k = k areturn a = Value aFigure 1: The Exception Monad
xy = x(�x! e)y = return (�x! ey)(e1 e2)y = e1y `apply` e2ywhere apply t u = t >>= �f ! f u(C e1 : : : em)y = return (C e1y : : : emy)(case e offC x1 : : : xm ! e1; ! e2g)y = ey >>= �x! case x offC x1 : : : xm ! e1y; ! e2ygky = return k(op e1 : : : em)y = e1y >>= �x1 ! : : : emy >>= �xm ! opy x1 : : : xm(error s)y = Error syFigure 2: The Call By Name Translation for Core Haskell

average :: [Float] -> Floataverage = \ xs -> (/) (sum xs) (length xs)==>average :: E (E [Float] -> E Float)average = return (\xs -> divide (sum `apply` xs) (length `apply` xs))divide :: E Float -> E Float -> E Floatdivide x y = x >>= \ x' -> y >>= \ y' -> divide' x ywheredivide' x 0 = Error (Value "division by 0")divide' x y = return (x / y)Figure 3: The Call by Name Translation in Action4

6. This transformation provides no help with in�nite loops.Problems 1, 2 and 3 alone are enough to render this approach infeasible but can be solvedby making exception handling part of the language and applying the transformation au-tomatically. Problem 4 can be largely solved by careful implementation and is discussedin Section 3. Problem 5 is a major problem requiring a certain amount of compromise oftheoretical beauty for practical utility and is discussed in Section 4. Problem 6 is a majorthorn in our side: we're forced to take a pragmatic approach and treat these as resourcelimits (the limited resource being the patience or lifetime of the user!).3 An E�cient ImplementationWe could implement exception handling as a direct source-to-source transformation (plussome special treatment of primitive operations) using the monad and translation given inSection 2. We chose not to do so because the transformation is very expensive: everythingbecomes twice as big and twice as slow.For example, using the STG machine on a 32-bit architecture, a Cons cell increases in sizefrom 12 bytes (1 tag word plus 2 pointers) to 20 bytes (a Cons cell plus a Value cell whichcontains 1 tag word and 1 pointer) and an Int cell increases from 8 bytes to 16 bytes. Worse,all access to the �elds of a data constructor requires two case analyses instead of one; allfunction applications require a case analysis and all primops need an error check.This overhead can be reduced somewhat by adding a new constructor to every data type.For example, Bool and List could be de�ned as follows:data Bool = Error_Bool Error_String | False | Truedata List a = Error_List Error_String | Nil | Cons a (List a)This eliminates the space overhead on constructors and eliminates the time overhead on caseanalyses, but the following problems remain:� It's not possible to have a polymorphic error function: we must use a distinct errorfunction for each type or we must overload error and modify the type of every poly-morphic function which raises a polymorphic error.� This will not work for Ints or functions since these are not ordinary datatypes.� Raising an exception is relatively slow: for every case expression being executed wehave to execute something like this:case e of{ Error_Bool err -> Error_List err; False -> ...; True -> ...} 5

These extra case alternatives are particularily galling because they are so trivial: ondetecting an error value, they just reraise the same error value.Our solution is to extend the abstract machine with direct support for exception handling.Speci�cally, the catchException function pushes a special \exception handler frame" ontothe stack and the error function unwinds the stack down to the topmost \exception handlerframe" and invokes the associated exception handler.On a na��ve graph reduction machine, our job would now be done but the STG machine (onwhich we implemented our proposal) delays updating a thunk until after the thunk has beenreduced to weak head normal form. Therefore, we must perform all those pending updatesas we unwind the stack.The STG machine maintains a list of pending updates which it threads through the stack.As the STG machine enters an updatable thunk, it adds the thunk to the list and as itreturns the value of a thunk, it updates the thunk with its value and removes the thunkfrom the head of the list. To add exceptions to the STG machine, we add exception handlerframes to the update list. This requires the following changes:� When catchException e h is executed, we add an exception handler to the \updatelist."� When error err is executed, we search down the update list for the topmost exceptionhandler updating each pending update with an error thunk which will reraise err ifthe thunk is reentered. We then apply the topmost exception handler to err.� When returning a constructor or a partially applied function (i.e. a value that is inweak head normal form), the STG machine already tests whether the top of the stackis a return address or an update frame. To this, we add a second test to check for anexception handler frame. If the top of the stack is a return address, the STG machinejumps to that address; if the top of the stack is an update frame, the STG machineperforms the update, pops the update frame and tries again; and if the top of the stackis an exception handler, the STG machine pops the exception handler and tries again.The second test looks like it might be expensive but, fortunately, we are able to exploitan optimisation already present in the STG machine which is designed to make the�rst test cheap. The key idea is to make update frames look just like return addresses.That is, the topmost word of every update frame is the address of code which willperform an update when executed. With this small change, there is no need to testwhether the top of the stack is a return address or not: we can just jump to the addresswithout a test. This same optimisation works for exception handlers too: so we incurno extra cost when we add exception handling.Note that we do not have to deal with return addresses (which are pushed by case ex-pressions); we only have to deal with pending updates. This avoids most of the overheadassociated with the simple source-to-source transformation.6

The behaviour of the modi�ed system is illustrated in �gure 4 which shows the steps involvedin evaluating the expressioncatchException (error "a" + 1) (const 0)Figures 4i{4v show how the STG machine unwinds the spine of the graph onto the stackand constructs the update list. Figure 4i shows the initial state of the machine: the stackcontains a pointer to the representation of the expression to be evaluated (which is stored onthe heap) and a STOP frame (which is the head of the update list). (The STG paper does notmention STOP frames but they were present in the implementation | after all, the last \real"update frame on the update list had to point to something!) Figure 4ii shows how an updateframe is added to the update list when the �rst thunk is entered. Figure 4iii shows howan exception handler frame is added to the update list when catchException is executed.Note that the exception handler frame contains a pointer to the exception handler whereasan update frame contains a pointer to the updatee. Figure 4iv shows another update framebeing added to the update list. Figure 4v shows the + primitive operation pushing a returnaddress ret_+ on the stack and evaluating its �rst argument. Since its �rst argument is anerror, this triggers the exception handling mechanism.Figures 4vi{4x show how the STG machine propagates and recovers from errors. Figure 4vishows the topmost pending update being updated with an indirection to an error thunk.Figure 4vii shows the exception handler frame being popped o� the stack in preparation forapplying the handler to the error message "a". Figures 4viii and 4ix show the exceptionhandler const 0 being applied to the error message "a". Finally, �gure 4x shows the �nalupdatee being updated with the result of the exception handler leaving just the result 0 andthe STOP frame on the stack.4 A Problem and Two SolutionsIn the previous section, we observed that the translation broke simple transformations. Thissection expands on the problem and describes two solutions: the �rst one is obvious butdoesn't quite work, the second is less obvious but works.The problem is that standard identities like the following hold in an untransformed programbut do not hold in a transformed program. (This problem is easily veri�ed using a = error"a" and b = error "b".)Arithmetic identities: a + b = b + aa � b = b � aa � 1 = a7

IND

AP2 catch.. const

AP2 1+

error "a"

STOP

0

b

c d

e

a

AP2 catch.. const

AP2 1+

error "a"

STOP

0

catch..

U

a b

c d

e

AP2 catch.. const

AP2 1+

error "a"

STOP

0

U

a b

c d

e

C

AP2 catch.. const

AP2 1+

error "a"

STOP

0

U

a b

c d

e

C

+

1

U

AP2 catch.. const

AP2 1+

error "a"

STOP

0

U

a b

c d

e

C

1

U

ret_+

AP2 catch.. constSTOP

0

error "a"

U

a b

c d
C

IND

e

AP2 catch.. constSTOP

0

AP2 catch.. constSTOP

0

error "a"

U

a b

c d
IND

e

AP2 catch.. constSTOP

0

error "a"

constSTOP

0
IND

c

error "a"
e

iv)

v)

iii)

ii)

i)

vii)

viii)

vi)

U

a b

c d
IND

e
error "a"

"a"

x)

ix)

U

a b

c d
IND

e

const

"a"

a b

d

Figure 4: Catching Exceptions in the STG machine8

Rearrangement of non-failing case:case a of (a1; a2) -> case b of (b1; b2) -> (a1 + b1; a2 + b2)= case b of (b1; b2) -> case a of (a1; a2) -> (a1 + b1; a2 + b2)The problem with these \reordering transformations" is that they change the dependencieswithin the program and so change which exception a program will raise. Since reliability(and, hence, exception handling) is essential for real world use, the obvious solution is tooutlaw such transformations. This is unpalatable for several reasons:1. One of the principal arguments for using lazy evaluation is that it supports trans-formations such as those above. This allows programs to be developed, explained oreven proved correct by transforming an ine�cient speci�cation into an e�cient imple-mentation. Losing this ability to freely transform programs would throw away one ofHaskell's main strengths.2. Simply outlawing reordering transformations is not enough to make exception han-dling predictable. We also have to choose and clearly document the present order ofevaluation in primitive operations such as (+) :: Int -> Int -> Int, the HaskellPrelude and standard libraries, and any non-standard libraries we may obtain from athird party.It seems unreasonable to insist on this level of documentation or to expect normalprogrammers to make use of it. Indeed, while we know of many libraries (for otherlanguages) which list which exceptions a function may raise, none provide detaileddocumentation of exactly what circumstances cause each exception to be raised andhow these exceptions are prioritised.3. Optimising Haskell compilers use transformations like the above to automatically im-prove the performance of Haskell programs. If we forbid these transformations, orattach side conditions to their use, optimising compilers become much more limited inscope. In particular, they would have great trouble exploiting the e�ects of strictnessanalysis | the worker-wrapper transformation is no longer valid.A second solution is to accept that programmers will not be able to reason about preciselywhich exception a program will raise and provide a new semantics (or new reasoning tools| there is little practical di�erence) which accepts a certain degree of non-determinism. Webelieve this is acceptable to programmers because programmers using languages which sup-port exception handling seem willing to accept imprecise statements as to which exceptionsa function might raise in return for more concise documentation and more implementationfreedom.The problem in making exception handling non-deterministic is in controlling the amountof non-determinism: if we allow too much non-determinism, the semantics will confuse pro-grams that the programmer wishes to keep distinct; if we allow too little non-determinism,9

then we must severely restrict exception handling and/or limit the set of transformationswhich we consider valid. To resolve this problem, we borrow an idea from Hughes andO'Donnell's seminal paper [5] on reasoning about non-deterministic functional programs.Their main idea was to separate deterministic parts of their programs from non-deterministicparts of their programs and to restrict non-determinism to the top-level of their programs.Applying this idea to exception handling, we take care to keep (non-deterministic) exceptionhandling code separate from normal (deterministic) code. This requires just one change tothe implementation described in Section 3: we restrict catchException to the IO monad bygiving it the more restrictive typecatchException :: IO a -> (String -> IO a) -> IO aBy limiting exception catching to the IO monad, we are able to use non-determinism indescribing exception handling without the non-determinism contaminating the semantics of\pure" parts of the program. The next two sections describe how we use non-determinismwhen reasoning about exception handling.4.1 Non-deterministic exceptions: a �rst attemptFor a long time, we thought the way to make exception handling non-deterministic was totake a second idea from Hughes and O'Donnell [5]:1. They introduce a new abstract data type f�g whose elements are sets of values oftype � but whose intended implementation is a single representative element chosennon-deterministically from the set it represents.2. Non-deterministic expressions are clearly distinguished by their type: a non-deterministicInt expression is given type fIntg.3. The operations on sets are carefully designed so that non-determinism cannot leakout into deterministic parts of the program. All operations on non-deterministic setsgenerate non-deterministic sets as results. In particular, they explicitly do not providea function likechoose :: {a} -> aRather, non-deterministic programs (i.e. expressions of type fag) can only be run atthe \top-level" of the program.Applying this idea to our semantics, we replace the error string with a set of error strings.That is, we change the exception type E described in Section 2 todata E a = Errors {E String} | Value a10

and changed the exception monad accordingly. In particular, we change primitive operationsto return the union of all exceptional arguments instead of just returning the �rst exceptionalargument.This change restores the commutativity of integer addition but it does not restore the validityof all the other transformations. In particular, the case of unfailing case transformation givenabove still does not hold. With a little ingenuity and a lot of changes we were able to restorethe validity of the case of unfailing case transformation as well, but the resulting systemsu�ered from two fatal aws:1. it is hard to understand the resulting system; and2. it is harder yet to imagine proving the resulting system correct w.r.t. a set of transfor-mations.We therefore reject this approach as being too hard to understand and too hard to validatewhether it could account for all the non-determinism associated with a set of transformations.4.2 Non-deterministic exceptions: a second attemptThe fundamental problem with the previous approach is that it does not directly mentionthe transformations that we want to preserve. So how are we meant to prove that theyare preserved; and how are we meant to tweak the system if we want new transformationsto hold? We �x this problem by making the transformations used in the compiler (and bylibrary writers) explicit in the semantics.Let us suppose that we have a relation �! which captures all the transformations that thecompiler might apply (that is, e1 �! e2 if the compiler might transform e1 into e2 duringcompilation). Then the set of values that an expression may return is ND[[e]].ND[[e]] = fD[[e0y]] j e �!� e0gwhere D[[e]] is the normal (deterministic!) value of e and �!� is the reexive, transitiveclosure of �!. (The application of the monad translation y to the transformed expression e0reects the fact that we implement the monad translation in our abstract machine and so itis applied after the compiler has done its job.)If D[[e]] 6= ?, then ND[[e]] will, of course, contain a single value (assuming that �! respectsthe Haskell semantics). But ifD[[e]] = ?, thenND[[e]] may contain multiple values dependingon e and �!. To see how the choice of �! a�ects the semantics, we consider three possiblechoices of transformation.1. If the compiler does no optimisation, then �! is the identity relation and ND[[e]]reduces to ND[[e]] = fD[[ey]]gWe can reason exactly about what exceptions will be raised but we have to be carefulwhen transforming programs. 11

2. At the other extreme, if we have no idea what transformations the compiler (or librarywriters) perform, we have to assume they perform any valid transformation. That is,e1 �! e2 i� D[[e1]] = D[[e2]]. This is always a safe choice, but it includes such dubioustransformations as: error "a" �! error "b"error "a" �! let x = x in xwhich real compilers are unlikely to use.3. Finally, if we know that the compiler performs (only) the unfailing case of case trans-formation given earlier, we choose �! accordingly and we haveND[[case a of (a1; a2) -> case b of (b1; b2) -> (a1 + b1; a2 + b2)]]= ND[[case b of (b1; b2) -> case a of (a1; a2) -> (a1 + b1; a2 + b2)]]The idea then is to choose a relation�! which includes the transformations that the compilerand library writers typically use but excludes those that are valid but unlikely, such aschanging error messages or replacing error messages with in�nite loops.There is just one y in the ointment: many standard transformations allow a program whichraises an error to be transformed into a program which does not terminate and so we areforced to confuse non-termination with raising an exception in our semantics. This is notparticularily satisfactory but it seems to be the best we can do | and it can be dealt withby adding facilities to catch interrupts or timeouts as discussed in the next section.5 Uni�cationThe development in the previous sections ignored the interaction between exception handlingand two other exception-like features of Haskell. This section describes these features andsuggests a uni�ed design which combines all three. Only the �rst has been implemented sofar.Haskell 1.4 [8] introduced a restricted form of exception handling which was labelled \errorcatching". This was a very conservative design which restricted both raising and catching ofexceptions to the IO monad. One can view our exception handling features as an extensionof \error catching" in which exceptions can be raised outside of the IO monad.The \error catching" operations provided in Haskell 1.4 are as follows:catch :: IO a -> (IOError -> IO a) -> IO afail :: IOError -> IO a
12

In addition, many input/output operations in the IO monad call fail in response to errorsituations in the execution environment. For example, writeFile \fails" if the named �ledoes not exist or is not writable.To write robust programs, one must catch both Haskell 1.4 errors and our exceptions bywriting something like:catchException (catch e h1) h2If we assume that most programmers will want to catch both kinds of exceptions, it makessense to combine catch and catchException into a single operation which catches eitherkind of error. The resulting system looks like this:catch :: IO a -> (IOError -> IO a) -> IO afail :: IOError -> IO araise :: IOError -> a(We also need to extend the IOError data type; this is discussed later in this section.)Merging these operations doesn't just simplify life for the programmer, it also simpli�es theimplementation since our exception handling mechanism can be used to e�ciently implementHaskell 1.4's error catching operations.We recently extended the STG machine with an interrupt catching mechanism [12]. In asequential Haskell system, we add this functioncatchInterrupt :: IO a -> IO a -> IO aThe semantics is as follows: catchInterrupt e h executes e; if e returns a value withoutbeing interrupted, catchInterrupt e h returns the value returned by e; if an interruptoccurs while executing e, then h is executed.Again, programmers are likely to want to catch both exceptions and interrupts and so weextend catch and IOError accordingly. There is just one subtlety: when propagating ex-ceptions, we overwrite pending updatees with error values; when interrupting programs, weoverwrite pending updates with reverted blackholes (this is the main subject of our otherpaper [12]). The reason for this di�erence is that if an internal exception is raised whenexecuting an expression e, that expression will always raise an exception but if an externalexception (such as an interrupt) is raised when executing e, it is entirely possible that noexternal exception would be raised the next time e is evaluated.Finally, Haskell 1.4's IOError type needs to modi�ed to let us encode errors, internal excep-tions and external exceptions to the programmer. We have not explored this change as yetbecause it is not yet clear what programmers will want to do with IOErrors. If all they wantto do is print them on the screen, it is su�cient to provide a function to convert IOErrorsto Strings; if they want to detect distinct exceptions and respond to them in di�erent ways,will they want to make a clear distinction between errors, internal exceptions and externalexceptions or would such a distinction merely get in the programmer's way?13

6 Related WorkThere have been three previous attempts to add exception handling to lazy functional lan-guages. Gerald [10] was an early attempt to add exception handling to a lazy language |but it has no clear semantics and seems to be limited to untyped languages. Wadler's excep-tion monad and call by name translation [13] is semantically sound (indeed, it is the basisfor our semantics!) and requires no language extensions but, as we discussed in Section 2, itis tedious to apply and renders programs almost unreadable. Dornan and Hammond [1, 2]proposed the same semantics that we describe in Section 2, implemented their proposaland proved that the semantics is sound (conuent and consistent). The primary di�erencebetween their work and ours is our observation that soundness is not su�cient: adding ex-ception handling breaks a large number of transformations. Our solution is to limit exceptioncatching to the IO monad (where less transformations are valid) and to use non-determinismto describe the semantics of programs that use exception handling.Finally, Henderson [4] independently proposed using Hughes and O'Donnell's non-deterministicsets when catching exceptions. A key di�erence is that instead of providing catchExceptionin the IO monad, he provides the following function.ndset_catch :: a -> Either {String} aThe problem with this (more exible) proposal is that it allows non-determinism to contam-inate the pure parts of the system with non-determinism as well: we cannot predict whetherthis pure expression will terminate or not.let { a = a; b = error "b" } in (seq (ndset_catch (a+b)) "Mystery")7 DiscussionIt is relatively straightforward to add exception handling to a Haskell implementation; itis much harder to design a language extension which preserves the essential properties of alazy language. This paper describes how to do both. The implementation is simple, e�cientand obvious; the design is rather subtle and requires some care to produce a design whichbalances pragmatic concerns (we have to be able to catch exceptions) with more theoreticalconcerns (we have to be able to reason about our programs).Acknowledgments: This work was carried out while working with Simon Peyton Jones,Simon Marlow and Sigbjorn Finne (all at Glasgow University) to reimplement the STGmachine. We bene�ted frommany conversations with them and from being able to implementour ideas in a state of the art Haskell implementation. Thanks too, to Paul Hudak and JohnPeterson (both at Yale) for comments on this paper and to Paul especially for the DarkShadows conversation which inspired section 4.2.14

References[1] C. Dornan and K. Hammond. Exception handling in lazy functional languages. ResearchReport CSC 90/R5, Glasgow University, Department of Computing Science, January1990.[2] K. Hammond. Exception handling in a parallel functional language. Research ReportCSC 89/R17, Glasgow University, Department of Computing Science, August 1989.[3] K. Hammond and A. Gordon. Monadic I/O in Haskell 1.3. In Proceedings of the 1995Haskell Workshop, pages 50{68, La Jolla, California, June 1995.[4] F. Henderson. electronic mail to the Haskell mailing list. June 1998.[5] R. Hughes and J. O'Donnell. Expressing and reasoning about non-deterministic func-tional programs. In K. Davis and R. Hughes, editors, Glasgow Functional ProgrammingWorkshop, Workshops in Computing, pages 308{328. Springer Verlag, 1989.[6] S. P. Jones and P. Wadler. Imperative functional programming. In 20th POPL, pages71{84, Charleston, Jan 1993. ACM.[7] S. Marlow and A. Reid. The Hugs-GHC libraries. Hugs compiler documentation, June1998.[8] J. Peterson and K. Hammond (editors). Report on the Programming Language Haskell1.4, A Non-strict Purely Functional Language. Research Report YALEU/DCS/RR-1106, Yale University, Department of Computer Science, April 1997.[9] S. Peyton Jones, T. Nordin, and A. Reid. Greencard: a foreign-language interface forHaskell. In Proc Haskell Workshop, Amsterdam, June 1997.[10] A. Reeves, D. Harrison, A. Sinclair, and P. Williamson. Gerald: An exceptional lazyfunctional programming language. In K. Davis and R. Hughes, editors, Glasgow Func-tional Programming Workshop, Workshops in Computing, pages 371{390. Springer Ver-lag, 1989.[11] A. Reid. Malloc pointers and stable pointers: Improving Haskell's foreign languageinterface. draft proceedings of Glasgow Functional Programming Workshop, July 1994.[12] A. Reid. Putting the Spine back in the Spineless Tagless G-machine: an implementationof revertible blackholes. Submitted to IFL'98, August 1998.[13] P. Wadler. Comprehending monads. In Proc ACM Conference on Lisp and FunctionalProgramming, Nice, June 1990. ACM.
15

