
A semantics for imprecise exceptions

Simon Peyton Jones

Microsoft Research Ltd, Cambridge

simonpj@microsoft.com

Alastair Reid

Yale University

reid-alastair@cs.yale.edu

Tony Hoare

�

Cambridge University Computer Laboratory

carh@comlab.ox.ac.uk

Simon Marlow

Microsoft Research Ltd, Cambridge

t-simonm@microsoft.com

Fergus Henderson

The University of Melbourne

fjh@cs.mu.oz.au

Abstract

Some modern superscalar microprocessors provide only im-

precise exceptions. That is, they do not guarantee to re-

port the same exception that would be encountered by a

straightforward sequential execution of the program. In ex-

change, they o�er increased performance or decreased chip

area (which amount to much the same thing).

This performance/precision tradeo� has not so far been

much explored at the programming language level. In this

paper we propose a design for imprecise exceptions in the

lazy functional programming language Haskell. We discuss

several designs, and conclude that imprecision is essential if

the language is still to enjoy its current rich algebra of trans-

formations. We sketch a precise semantics for the language

extended with exceptions.

The paper shows how to extend Haskell with exceptions

without crippling the language or its compilers. We do not

yet have enough experience of using the new mechanism to

know whether it strikes an appropriate balance between ex-

pressiveness and performance.

1 Introduction

All current programming languages that support exceptions

take it for granted that the language de�nition should spec-

ify, for a given program, what exception, if any, is raised

when the program is executed. That used to be the case

in microprocessor architecture too, but it is no longer so.

Some processors, notably the Alpha, provide so-called im-

precise exceptions. These CPUs execute many instructions

in parallel, and perhaps out of order; it follows that the

�rst exception (divide-by-zero, say) that is encountered is

�

On study leave from the Oxford University Computing

Laboratory

This paper appears in Proceedings of the SIGPLAN

Symposium on Programming Language Design and Im-

plementation (PLDI'99), Atlanta

not necessarily the �rst that would be encountered in sim-

ple sequential execution. One approach is to provide lots of

hardware to sort the mess out, and maintain the program-

mer's illusion of a simple sequential execution engine; this

is what the Pentium does. Another, taken by the Alpha, is

to give a less precise indication of the whereabouts of the

exception.

In this paper we explore this same idea at the level of the

programming language. The compiler, or the programmer,

might want to improve performance by changing the pro-

gram's evaluation order. But changing the evaluation order

may change which exception is encountered �rst. One so-

lution is to ban such transformations, or to restrict them

to evaluations that provably cannot raise exceptions [19].

The alternative we propose here is to trade precision for

performance: permit richer transformations, and make the

language semantics less precise with respect to which excep-

tion is raised.

Note that the use of imprecise exceptions at the program-

ming language level is not due to the use of imprecise ex-

ceptions at the hardware level. (Indeed, the latter may

well prove ephemeral.) Rather, both of these arise from

the same motivation: permitting better optimization. It's

quite possible to have imprecise exceptions at the program-

ming language level but not at the hardware level, or vice

versa. However, the use of imprecise exceptions at the pro-

gramming language level may make it much easier for im-

plementations to generate e�cient code on hardware that

has imprecise exceptions.

We make all this concrete by considering a particular pro-

gramming language, Haskell, that currently lacks excep-

tions. Our contributions are as follows:

� We review and critique the folk-lore on exception-

handling in a lazy language like Haskell (Section 2).

Non-functional programmers may �nd the idea of

exceptions-as-values, as opposed to exceptions-as-

control-ow, interesting.

� We present a new design, based on sets of exceptions,

to model imprecision about which exceptions can occur

(Section 3).

� We sketch a semantics for the resulting language, using

two layers: a denotational semantics for pure expres-

sions (including exception-raising ones), and an oper-

ational semantics \on top" that deals with exception

handling, as well as input/output (Section 4).

� Informed by this semantics, we show that various ex-

tensions of the basic idea, such as resource-exhaustion

interrupts, can readily be accommodated; while oth-

ers, such as a \pure" exception handler, are more trou-

blesome (Section 5).

There has been a small urry of recent proposals and papers

on exception-handling in Haskell [3, 13, 12]. The distinctive

feature of this paper is its focus on the semantics of the

resulting language. The trick lies in getting the nice fea-

tures of exceptions (e�ciency, implicit propagation, and the

like) without throwing the baby out with the bath-water

and crippling the language design.

Those less interested in functional programming per se may

nevertheless �nd interesting our development of the (old)

idea of exceptions-as-values, and the trade-o� between pre-

cision and performance.

2 The status quo ante

Haskell has managed without exceptions for a long time,

so it is natural to ask whether they are either necessary or

appropriate. We briey explore this question, as a way of

setting the scene for the rest of the paper.

Before we begin, it is worth identifying three di�erent ways

in which exceptions are typically used in languages that sup-

port them:

Disaster recovery uses an exception to signal a (hopefully

rare) error condition, such as division by zero or an

assertion failure. In a language like ML or Haskell we

may add pattern-match failure, when a function is ap-

plied to a value for which it does not have a de�ning

equation (e.g. head of the empty list). The program-

mer can usually also raise an exception, using a prim-

itive such as raise.

The exception handler typically catches exceptions

from a large chunk of code, and performs some kind of

recovery action.

Exception handling used in this way provides a degree

of modularity: one part of a system can protect itself

against failure in another part of the system.

Alternative return. Exceptions are sometimes used as an

alternative way to return a value from a function,

where no error condition is necessarily implied. An

example might be looking up a key in a �nite map:

it's not necessarily an error if the key isn't in the map,

but in languages that support exceptions it's not un-

usual to see them used in this way.

The exception handler typically catches exceptions

from a relatively circumscribed chunk of code, and

serves mainly as an alternative continuation for a call.

Asynchronous events. In some languages, an asyn-

chronous external event, such as the programmer typ-

ing \^C" or a timeout, are reected into the program-

mer's model as an exception. We call such things asyn-

chronous exceptions, to distinguish them from the two

previous categories, which are both synchronous ex-

ceptions.

2.1 Exceptions as values

No lazy functional programming language has so far sup-

ported exceptions, for two apparently persuasive reasons.

Firstly, lazy evaluation scrambles control ow. Evaluation

is demand-driven; that is, an expression is evaluated only

when its value is required [14]. As a result, programs don't

have a readily-predictable control ow; the only productive

way to think about an expression is to consider the value

it computes, not the way in which the value is computed.

Since exceptions are typically explained in terms of changes

in control ow, exceptions and lazy evaluation do not appear

very compatible.

Secondly, exceptions can be explicitly encoded in values, in

the existing language, so perhaps exceptions are in any case

unnecessary. For example, consider a function, f, that takes

an integer argument, and either returns an integer or raises

an exception. We can encode it in Haskell thus:

data ExVal a = OK a

| Bad Exception

f :: Int -> ExVal Int

f x = ...defn of f...

The data declaration says that a value of type ExVal t is

either of the form (Bad ex), where ex has type Exception,

or is of the form (OK val), where val has type t. The

type signature of f declares that f returns a result of type

ExVal Int; that is, either an Int or an exception value. In

short, the exception is encoded into the value returned by f.

Any consumer of f's result is forced, willy nilly, to �rst per-

form a case analysis on it:

case (f 3) of

OK val -> ...normal case...

Bad ex -> ...handle exception...

There are good things about this approach: no extension to

the language is necessary; the type of a function makes it

clear whether it can raise an exception; and the type system

makes it impossible to forget to handle an exception.

The idea of exceptions as values is very old [10, 18]. Subse-

quently it was realised that the exception type constructor,

ExVal, forms a monad [6, 9]. Rather than having lots of ad

hoc pattern matches on OK and Bad, standard monadic ma-

chinery such as Haskell's do notation, can hide away much

of the plumbing.

2

2.2 Inadequacies of exceptions as values

Encoding exceptions explicitly in an un-modi�ed language

works beautifully for the alternative-return usage of excep-

tions, but badly for the disaster-recovery use, and not at all

for asynchronous events. There are several distinct prob-

lems:

� Increased strictness. When adding exception handling

to a lazy program, it is very easy to accidentally make

the program strict, by testing a function argument for

errors when it is passed instead of when it is used.

� Excessive clutter. The principal feature of an excep-

tion mechanism is that exceptions propagate implic-

itly, without requiring extra clutter in the code be-

tween the place the exception is raised and where it

is handled. In stark contrast, the explicit-encoding

approach forces all the intermediate code to deal ex-

plicitly (or monadically) with exceptional values. The

resulting clutter is absolutely intolerable for those sit-

uations where exceptions are used to signal disaster,

because in these cases propagation is almost always re-

quired. For example, where we would originally have

written:

(f x) + (g y)

we are now forced to write

1

:

case (f x) of

Bad ex -> Bad ex

OK xv -> case (g y) of

Bad ex -> Bad ex

OK yv -> OK (xv+yv)

These strictures do not apply where exceptions are

used as an alternative return mechanism. In this case,

the approach works beautifully because propagation

isn't nearly so important.

� Built-in exceptions are un-catchable. In Haskell, all

the causes of failure recognised by the language itself

(such as divide by zero, and pattern-match failure) are

treated semantically as bottom (?), and are treated in

practice by bringing the program to a halt. Haskell al-

lows the program to trigger a similar failure by calling

the standard function error, whose type is:

error :: String -> a

So, evaluating the call (error "Urk") halts execution,

printing \Urk" on standard error. The language o�ers

no way to catch and recover from any of these (syn-

chronous) events. This is a serious problem when writ-

ing programs composed out of large pieces over which

one has little control; there is just no way to recover

from failure in any sub-component.

� Loss of modularity and code re-use, especially for

higher-order functions. For example, a sorting func-

tion that takes a comparison function as an argu-

ment would need to be modi�ed to be used with an

exception-raising comparison function.

1

The monadic version is nearly as bad.

� Poor e�ciency. Exceptions should cost very little if

they don't actually occur. Alas, an explicit encoding

into Haskell values forces a test-and-propagate at every

call site, with a substantial cost in code size and speed.

� Loss of transformations. Programs written in a

monadic style have many fewer transformations than

their pure counterparts. We elaborate on this problem

in Section 3.

� No asynchronous exceptions. Asynchronous excep-

tions, by their nature, have nothing to do with the

value of the unfortunate expression that happens to

be under evaluation when the external event occurs.

Since they arise from external sources, they clearly

cannot be dealt with as an explicitly-encoded value.

2.3 Goals

With these thoughts in mind, we have the following goals:

� Haskell programs that don't invoke exceptions should

have unchanged semantics (no clutter), and run with

unchanged e�ciency.

� All transformations that are valid for ordinary Haskell

programs should be valid for the language extended

with exceptions. It turns out that we do not quite

achieve this goal, for good reasons (Section 4.5).

� It should be possible to reason about which exceptions

a program might raise. For example, we might hope to

be able to prove that non-recursive programs will ter-

minate, and programs that don't use arithmetic can't

raise division by zero.

� In so far as non-determinism arises, it should be possi-

ble for the programmer to con�ne the non-determinism

to a clearly-delineated part of the program.

These properties may seem obvious, but they are a little

tricky to achieve. In existing languages that support excep-

tions, such as ML or Ada, the need to maintain the exception

semantics noticeably constrains the valid set of transforma-

tions and optimisations that a programmer or compiler can

perform. Compilers often attempt to infer the set of possi-

ble exceptions with a view to lifting these restrictions, but

their power of inference is limited; for example, they must

be pessimistic across module boundaries in the presence of

separate compilation. We claim that our design retains al-

most all useful opportunities for transformation, using only

the monadic type system built into Haskell. No separate

e�ect analysis is required.

3 A new design

Adding exceptions to a lazy language, as opposed to encod-

ing exceptions in the un-extended language, has received

relatively little attention until recently. Dornan and Ham-

mond discussed adding exceptions to the pure (non-I/O)

part of a lazy language [2], and there has been a urry of

recent activity [3, 13, 12]. Drawing on this work, we propose

3

a programming interface for an exceptions mechanism. This

sets the scene for the core of our paper, the semantics for

the resulting language.

3.1 The basic idea

As discussed in Section 2.1, our �rst design decision is more

or less forced by the fact that Haskell is a lazy language: ex-

ceptions are associated with data values, rather than with

control ow. This di�ers fundamentally from the stan-

dard approach to exceptions taken for imperative, or strict

functional, languages, where exceptions are associated with

control ow rather than with data ow. One place that

exceptions-as-values does show up in the imperative world

is the NaNs (not-a-number) and in�nities of the IEEE oat-

ing point standard, where certain bit-patterns encode ex-

ceptional values, which are propagated by the oating point

operations [20].

We extend this exceptions-as-values idea uniformly to values

of any type. A value (of any type) is either a \normal"

value, or it is an \exceptional" value. An \exceptional"

value contains an exception, and we must say what that is.

The data type Exception is the type of exceptions. It is

a new algebraic data type, supplied as part of the Haskell

Prelude, de�ned something like this:

data Exception = DivideByZero

| Overflow

| UserError String

...

One could imagine a simpler type (e.g. encoding an ex-

ception as an integer, or a string), or a richer type (e.g. a

user-extensible data type, such as is provided by ML), but

this one is a useful compromise for this paper. Nothing we

say depends on the exact choice of constructors in the data

type; hence the \...".

For each type a, the new, primitive function raise maps an

Exception into an exceptional value of type a:

raise :: Exception -> a

Here, immediately, we see a di�erence from the explicit-

encoding approach. Every type in the language contains

exeptional values | previously only the type ExVal t had

that possibility. We can also see that the same Exception

type serves to represent an exception, regardless of the type

into which the exception is embedded.

The previously-primitive function error can now readily be

de�ned using raise:

error :: String -> a

error str = raise (UserError str)

Next, we need to be able to catch exceptions. The new,

primitive function getException takes a value, and deter-

mines whether or not it is an exceptional value

2

:

getException :: a -> ExVal a

2

We will see later that there is a fundamental problem with giv-

ing getException this type, but we defer discussion of this point to

Section 3.5.

In e�ect, getException rei�es the implicit presence or ab-

sence of an exception in its argument to an explicit dis-

criminated union, represented by the new Prelude data type

ExVal:

data ExVal a = OK a | Bad Exception

Here is an example of how getException might be used:

case getException (goop x) of

OK val -> normal_case val

Bad exn -> recovery_case exn

Here, getException catches any exception raised while goop

is evaluated, and presents the result as a value of type ExVal.

The case expression scrutinises that value and takes appro-

priate action.

3.2 Propagation

The whole point of exceptions is, of course, that they propa-

gate automatically. So integer addition, for example, should

deliver an exceptional value if either of its arguments is an

exceptional value.

In a lazy language, however, we have to re-examine our

notion of propagation. In particular, an exceptional value

might lurk inside an unevaluated function argument or data

structure. For example, consider the zipWith function:

zipWith f [] [] = []

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

zipWith f xs ys = error "Unequal lists"

A call to zipWith may return an exception value directly |

for example, zipWith (+) [] [1]. A call to zipWith may

also return a list with an exception value at the end | for

example, zipWith (+) [1] [1,2]. Finally, it may deliver a

list whose spine is fully de�ned, but some of whose elements

are exceptional values | for example zipWith (/) [1,2]

[1,0].

To repeat: it is values not calls that may be exceptional,

and exceptional values may, for example, hide inside lazy

data structures. To be sure that a data structure contains

no exceptional values one must force evaluation of all the

elements of that structure (this can be done using Haskell's

built-in seq function).

3.3 Implementation

One advantage of the story so far is that it is readily, and

cheaply, implementable. We certainly do not want the space

and time cost of explicitly tagging every value with an in-

dication of whether it is \normal" or \exceptional". Fortu-

nately, the standard exception-handling mechanisms from

procedural languages work perfectly well:

� getException forces the evaluation of its argument to

head normal form; before it begins this evaluation, it

marks the evaluation stack in some way.

� raise ex simply trims the stack to the top-most

getException mark, and returns Bad ex as the result

4

of getException.

� If the evaluation of the argument to getException

completes without provoking a call to raise, then

getException returns OK val, where val is the value

of the argument.

Actually, matters are not quite as simple as we suggest here.

In particular, trimming the stack after a call (raise ex) we

must be careful to overwrite each thunk that is under evalu-

ation with (raise ex). That way, if the thunk is evaluated

again, the same exception will be raised again, which is as

it should be

3

. The details are described by [12], and need

not concern us here.

The main point is that the e�ciency of programs that do

not invoke exceptions is una�ected. Indeed, the e�ciency

of any function that does not invoke exceptions explicitly

is una�ected. Notice that an exceptional value behaves as a

�rst class value, but it is never explicitly represented as such.

When an exception occurs, instead of building a value that

represents it, we look for the exception handler right away.

The semantic model (exceptional values) is quite di�erent

from the implementation (evaluation stacks and stack trim-

ming). The situation is similar to that with lazy evaluation:

a value may behave as an in�nite list, but it is certainly never

explicitly represented as such.

3.4 A problem and its solution

There is a well-known di�culty with the approach we have

just described: it invalidates many useful transformations.

For example, integer addition should be commutative; that

is, e

1

+e

2

= e

2

+e

1

. But what are we to make of this expres-

sion?

getException ((1/0) + (error "Urk"))

Does it deliver DivideByZero or UserError "Urk"? Urk in-

deed! There are two well known ways to address this prob-

lem, and one more cunning one which we shall adopt:

� Fix the evaluation order, as part of the language se-

mantics. For example, the semantics could state that

+ evaluates its �rst argument �rst, so that if its �rst ar-

gument is exceptional then that's the exception that is

returned. This is the most common approach, adopted

by (among others) ML, FL, and some proposals for

Haskell [2]. It gives rise to a simple semantics, but has

the Very Bad Feature that it invalidates many useful

transformations | in particular, ones that alter the

order of evaluation.

This loss of transformations is a serious weakness.

Williams, Aiken, and Wimmers give numerous exam-

ples of how the presence of exceptions can seriously

weaken the transformation algebra of the (strict) lan-

guage FL [19]. For a lazy language, the loss of trans-

formations would be even more of a catastrophe. In

particular, Haskell compilers perform strictness anal-

ysis to to turn call-by-need into call-by-value. This

3

Real implementations overwrite a thunk with a \black hole" when

its evaluation is begun to avoid a celebrated space leak [5]. That is

why, when an exception causes their evaluation to be abandoned, they

must be overwritten with something more informative.

crucial transformation changes the evaluation order,

by evaluating a function argument when the function

is called, rather than when the argument is demanded.

Rather than remove such transformations altogether,

optimising compilers often perform some variant of ef-

fect analysis, to identify the common case where excep-

tions cannot occur (e.g. [8]). They use this informa-

tion to enable the otherwise-invalid transformations.

Williams, Aiken, and Wimmers describe a calculus for

the language FL that expresses the absence of excep-

tions as a special program annotation; they can then

give a precise characterisation of the transformation

algebra of this augmented language [19].

What all these approaches have in common is that use-

ful transformations are disabled if the sub-expressions

are not provably exception-free.

� Go non-deterministic. That is, declare that + makes a

non-deterministic choice of which argument to eval-

uate �rst. Then the compiler is free to make that

choice however it likes. Alas, this approach exposes

non-determinism in the source language, which also

invalidates useful laws. In particular, � reduction is

not valid any more. For example, consider:

let x = (1/0) + (error "Urk")

in getException x == getException x

As it stands, the value of this expression is presumably

True. But if the two occurrences of x are each replaced

by x's right hand side, then the non-deterministic +

might (in principle) make a di�erent choice at its two

occurrences, so the expression could be False. We

count this too high a price to pay.

� The more cunning choice is to return both exceptions!

That is, we rede�ne an exceptional value to contain a

set of exceptions, instead of just one; and + takes the

union of the exception sets of its two arguments. Now

(1/0) + (error "Urk") returns an exceptional value

including both DivideByZero and UserError "Urk",

and (semantically) it will do so regardless of the order

in which + evaluates its arguments.

The beauty of this approach is that almost all trans-

formations remain valid, even in the presence of excep-

tions (Section 4.5 discusses the \almost"). No analysis

required!

3.5 Fixing getException

The allegedly cunning choice may have �xed the commuta-

tivity of +, but, now that an exceptional value can contain

a set of exceptions, we must revisit the question of what

getException should do. There are two possibilities.

One alternative is for getException to return the complete

set of exceptions (if any) in its argument value. This would

be an absolute disaster from an implementation point of

view! It would mean that the implementation would really

have to maintain a set of exceptions; if the �rst argument to

+ failed, then the second would have to be evaluated anyway

so that any exceptions in it could be gathered up.

5

The cunning choice is only cunning because there is another

alternative: getException can choose just one member of

the set of exceptions to return. Of course, that simply

exposes the non-determinism again, but we can employ a

now-standard trick [1]: put getException in the IO monad.

Thus, we give getException the following type:

getException :: a -> IO (ExVal a)

To make sense of this new de�nition, we digress briey to in-

troduce Haskell's IO monad. In Haskell, a value of type IO t

is a computation that might perform some input/output, be-

fore eventually returning a value of type t. A value of type

IO t is a �rst-class value | it can be passed as an argu-

ments, stored in a data structure | and evaluating it has

no side e�ects. Only when it is performed does it have an

e�ect. An entire Haskell program is a single value of type

IO (); to run the program is to perform the speci�ed com-

putation. For example, here is a complete Haskell program

that gets one character from standard input and echoes it

to standard output

4

:

main :: IO ()

main = getChar >>= (\ch ->

putChar ch >>= (\() ->

return ()

))

The types of the various functions involved are as follows:

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

getChar :: IO Char

putChar :: Char -> IO ()

The combinators >>= glues together two IO computations in

sequence, passing the result from the �rst to the second.

return does no input/output, simply returning its argu-

ment. getChar gets a character from the standard input

and returns it; putChar does the reverse. When main is per-

formed, it performs getChar, reading a character from stan-

dard input, and then performs the computation obtained

by applying the \ch -> ... abstraction to the character,

in this case putChar ch. A more complete discussion of

monadic I/O can be found in [17].

Now we return to the type of getException. By giving it

an IO type we allow getException to perform input/output.

Hence, when choosing which of the exceptions in the set to

choose, getException is free (although absolutely not re-

quired) to consult some external oracle (the FT Share In-

dex, say). Each call to getException can make a di�erent

choice; the same call to getException in di�erent runs of

the same program can make a di�erent choice; and so on.

Beta reduction remains valid. For example the meaning of:

let

x = (1/0) + error "Urk"

in

getException x >>= (\v1 ->

getException x >>= (\v2 ->

return (v1==v2)))

is una�ected if both occurrences of x are replaced by x's

right hand side, thus:

4

The \\" is Haskell's notation for �

getException ((1/0) + error "Urk") >>= (\v1 ->

getException ((1/0) + error "Urk") >>= (\v2 ->

return (v1==v2)))

Why? Because whether or not this substitution is made,

getException will be performed twice, making an inde-

pendent non-deterministic choice each time. Like any IO

computation, (getException e) can be shared, and even

evaluated, without actually performing the nondeterminis-

tic choice. That only happens when the computation is per-

formed.

The really nice thing about this approach is that the stack-

trimming implementation does not have to change. The set

of exceptions associated with an exceptional value is repre-

sented by a single member, namely the exception that hap-

pens to be encountered �rst. getException works just as be-

fore: mark the evaluation stack, and evaluate its argument.

Successive runs of a program, using the same compiler opti-

misation level, will in practice give the same behaviour; but

if the program is recompiled with di�erent optimisation set-

tings, then indeed the order of evaluation might change, so

a di�erent exception might be encountered �rst, and hence

the exception returned by getException might change.

The idea of using a single representative to stand for a set

of values, from which a non-deterministic choice is made, is

based on an old paper by Hughes and O'Donnell [15]. Our

contribution is to apply this idea in the setting of exception

handling. The key observation is that non-determinism in

the exceptions can be kept separate from non-determinism

in the normal values of a program.

4 Semantics

So far we have reasoned informally. In this section we give

a precise semantics to (a fragment of) Haskell augmented

with exceptions. Here are two di�culties.

� Consider

loop + error "Urk"

Here, loop is any expression whose evaluation di-

verges. It might be declared like this:

loop = f True

where

f x = f (not x)

So, does (loop + error "Urk") loop forever, or does

it return an exceptional value? Answer: it all depends

on the evaluation order of +. As is often the case,

bottom muddies the waters.

� Is the following equation true?

case x of

(a,b) -> case y of

(p,q) -> e

=

case y of

(p,q) -> case x of

(a,b) -> e

6

In Haskell the answer is \yes"; since we are going to

evaluate both x and y, it doesn't matter which order

we evaluate them in. Indeed, the whole point of strict-

ness analysis is to �gure out which things are sure to

be evaluated in the end, so that they can be evaluated

in advance [7]. But if x and y are both bound to ex-

ceptional values, then the order of the cases clearly

determines which exception will be encountered. Un-

like the + case, it is far from obvious how to combine

the exceptional value sets for x and y: in general the

right hand side of a case alternative might depend on

the variables bound in the pattern, and it would be

unpleasant for the semantics to depend on that.

The rest of this section gives a denotational semantics for

Haskell extended with exceptions, that addresses both of

these problems. We solve the �rst by identifying ? with the

set of all possible exceptions; we solve the latter by (semanti-

cally) evaluating the case alternatives in \exception-�nding

mode".

4.1 Domains

First we describe the domain [[�]] that is associated with

each Haskell type � . We use a rather standard monadic

translation, for a monad M, de�ned thus:

M t = t

?

+ P(E)

?

E = fDivideByZero; Overflow; UserError; : : :g

The \+" in this equation is coalesced sum; that is, the bot-

tom element of [[�]]

?

is coalesced with the bottom element of

P(E)

?

. The set E is the set of all the possible synchronous

exceptions; to simplify the semantics we neglect the String

argument to UserError. P(E) is the lattice of all subsets of

E , under the ordering

s

1

v s

2

� s

1

� s

2

That is, the bottom element is the set E , and the top ele-

ment is the empty set. This corresponds to the idea that

the fewer exceptions that are in the exceptional value, the

more information the value contains. The least informative

value contains all exceptions. This entire lattice is lifted,

by adding an extra bottom element, which we also identify

with a set of exceptions:

? = E [fNonTerminationg

At �rst we distinguished ? from the set of all exceptions,

but that turns out not to work. Instead, we identify ?

with the set of all exceptions, adding one new constructor,

NonTermination, to the Exception type:

data Exception = ... -- (as before)

| NonTermination

This construction of P(E)

?

is a very standard semantic cod-

ing trick; it is closely analogous to a canonical representation

of the Smyth powerdomain over a at domain, given by [11].

Here is an alternative, and perhaps more perspicuous, way

to de�neM, in which we tag \normal" values with Ok, and

e ::= x variable

j k constant

j e

1

e

2

application

j �x:e abstraction

j C e

1

: : : e

n

constructors

j case e of { : : : p

i

->r

i

; : : : } matching

j raise e raise exception

j e

1

+ e

2

primitives

j fix e �xpoint

p ::= C x

1

: : : x

n

pattern

Figure 1: Syntax of a tiny language

\exceptional" values (including ?) with Bad:

M t = fOk v j v 2 tg [

fBad s j s � Eg [

fBad (E [fNonTerminationg)g

One might wonder what sort of a value Bad fg is: what is

an exceptional value containing the empty set of exceptions?

Indeed, such a value cannot be the denotation of any term,

but we will see shortly that it is nevertheless a very useful

value for de�ning the semantics of case and for reasoning

about it (Section 4.3).

Now that we have constructed the exception monad, we can

translate Haskell types into domains in the usual way:

[[Int]] = M Z

[[�

1

->�

2

]] = M ([[�

1

]]! [[�

2

]])

[[(�

1

,�

2

)]] = M ([[�

1

]] � [[�

2

]])

. . . etc . . .

We refrain from giving the complete encoding for arbitrary

recursive data types, which is complicated. The point is

that we simply replace the normal Haskell monad, namely

lifting, with our new monad M.

4.2 Combinators

Next, we must give the denotation, or meaning, of each form

of language expression. Figure 1 gives the syntax of the

small language we treat here. The denotation of an expres-

sion e in an environment � is written [[e]]�.

We start with +:

[[e

1

+ e

2

]]�

= v

1

� v

2

if Ok v

1

= [[e

1

]]�

and Ok v

2

= [[e

2

]]�

= Bad (S([[e

1

]]�) [S([[e

2

]]�)) otherwise

The �rst equation is used if both arguments are normal val-

ues. The second is used if either argument is an exceptional

value, in which case the exceptions from the two arguments

are unioned. We use the auxiliary function S(), which re-

turns the empty set for a normal value, and the set of ex-

ceptions for an exceptional value:

S(Ok v) = ;

S(Bad s) = s

7

The auxiliary function � simply does addition, checking for

overow:

v

1

� v

2

= Ok (v

1

+ v

2

) if � 2

31

h (v

1

+ v

2

) h 2

31

= Bad fOverflowg otherwise

The de�nition of [[+]] is monotonic with respect to v, as it

must be. The fact that + is strict in both arguments is a

consequence of the fact that ? is the set of all exceptions; a

moment's thought should convince you that if either argu-

ment is ? then so is the result.

Next, we deal with raise:

[[raise e]]� = Bad s if Bad s = [[e]]�

= Bad fCg if Ok C = [[e]]�

Thus equipped, we can now understand the semantics of the

problematic expression given above:

loop + error "Urk"

Its meaning is the union of the set of all exceptions (which is

the value of loop), and the singleton set UserError "Urk",

which is of course just ?, the set of all exceptions.

The rules for function abstraction and application are:

[[�x:e]]� = Ok (�y:[[e]]�[y=x])

[[e

1

e

2

]]� = f ([[e

2

]]�) if Ok f = [[e

1

]]�

= Bad(s [S([[e

2

]]�) if Bad s = [[e

1

]]�

A lambda abstraction is a normal value; that is �x:? 6=

?. The (more purist) identi�cation of these two values is

impossible to implement: how can getException distinguish

�x:? from �x:v, where v 6= ?? Fortunately, in Haskell �x:?

and ? are indeed distinct values.

Applying a normal function to a value is straightforward,

but matters are more interesting if the function is an ex-

ceptional value. In this case we must union its exception

set with that of its argument, because under some circum-

stances (notably if the function is strict) we might legiti-

mately evaluate the argument �rst; if we neglected to union

in the argument's exceptions, the semantics would not allow

this standard optimisation. That is why we do not use the

simpler de�nition:

[[e

1

e

2

]]� = f ([[e

2

]]�) if Ok f = [[e

1

]]�

= Bad s if Bad s = [[e

1

]]�

We have traded transformations for precision. Notice, how-

ever, that we must not union in the argument's exceptions

if the function is a normal value, or else we would lose �

reduction; consider (�x:3)(1/0)

The rules for constants and constructor applications are sim-

ple; they both return normal values. Constructors are non-

strict, and hence do not propagate exceptions in their argu-

ments. Variables and �xpoints are also easy.

[[k]]� = Ok k

[[C e

1

: : : e

n

]]� = Ok (C ([[e

1

]]�) : : : ([[e

n

]]�))

[[x]]� = �(x)

[[fix e]]� =

1

G

k=0

([[e]]�)

k

(?)

4.3 case expressions

Haskell contains case expressions, so we must give them a

semantics. Here is the slightly surprising rule:

[[case e of {p

i

->r

i

}]]�

= [[r

i

]]�[v=p

i

] if Ok v = [[e]]�

and v matches p

i

= Bad (s [(

S

i

S([[r

i

]]�[Bad fg=p

i

])))

if Bad s = [[e]]�

The �rst case is the usual one: if the case scrutinee evalu-

ates to a \normal" value v, then select the appropriate case

alternative. The notation is a little informal: �[v=p

i

] means

the environment � with the free variables of the pattern p

i

bound to the appropriate components of v.

The second equation is the interesting one. If the scrutinee

turns out to be a set of exceptions (which, recall, includes

?), the obvious thing to do is to return just that set |

but doing so would invalidate the case-switching transfor-

mation. Intuitively, the semantics must explore all the ways

in which the implementation might deliver an exception, so

it must \evaluate" all the branches anyway, in \exception-

�nding mode". We model this by taking the denotations of

all the right hand sides, binding each of the pattern-bound

variables to the strange value Bad fg. Then we union to-

gether all the exception sets that result, along with the ex-

ception set from the scrutinee. The idea is exactly the same

as in the special case of +, and function application: if the

�rst argument of + raises an exception we still union in the

exceptions from the second argument. Here, if the case scru-

tinee raises an exception, we still union in the exceptions

from the alternatives.

Remember that there is no implication that an implemen-

tation will do anything other than return the �rst exception

that happens to be encountered. The rather curious seman-

tics is necesary, though, to validate transformations that

change the order of evaluation, such as that given at the

beginning of Section 4.

4.4 Semantics of getException

So far we have not mentioned getException. The seman-

tics of operations in the IO monad, such as getException,

may involve input/output or non-determinism. The most

straightforward way of modelling these aspects is by giv-

ing an operational semantics for the IO layer, in contrast

to the denotational semantics we have given for the purely-

functional layer.

We give the operational semantics as follows. From a seman-

tic point of view we regard IO as an algebraic data type with

constructors return, >>=, putChar, getChar, getException.

The behaviour of a program is the set of traces obtained from

the following labelled transition system, which acts on the

denotation of the program. One advantage of this presen-

tation is that it scales to other extensions, such as adding

concurrency to the language [16].

8

Here are the structural transition rules:

v

1

! v

2

(v

1

>>= k)! (v

2

>>=k)

((return v) >>= k)! (k v)

The �rst ensures that transitions can occur inside the �rst

operand of the >>= constructor; the second explains that a

return constructor just passes its value to the second argu-

ment of the enclosing >>=. The rules for input/output are

now quite simple:

getChar

?c

! return c

putChar c

!c

! return ()

The \?c" on top of the arrow indicates that the transition

takes place by reading a character c from the environment;

and inversely for \!c".

Now we can get to the semantics of exceptions. The rules

are:

getException (Ok v) ! return (OK (Ok v))

getException (Bad s) ! return (Bad x)

if x 2 s

getException (Bad s) ! getException (Bad s)

if NonTermination 2 s

If getException scrutinises a \normal" value, it just returns

it, wrapped in an OK constructor.

For \exceptional" values, there are two choices: either

� pick an arbitrary member of the set of exceptions and

return it, or

� if NonTermination is in the set of exceptions, then

make a transition to the same state.

The transition rules for getException are deliberately non-

deterministic. In particular, if the argument to getException

is ?, then getException may diverge, or it may return an

arbitrary exception.

To execute a Haskell program, one performs the computa-

tion main, which has type IO (). In the presence of excep-

tions, the value returned might now be Bad x, rather than

Ok (). This simply corresponds to an uncaught exception,

which the implementation should report.

4.5 Transformations

Our overall goal is to add exceptions to Haskell without

losing useful transformations. Yet it cannot be true that

we lose no transformations. For example, in Haskell as it

stands, the following equation holds:

error "This" = error "That"

Why? Because both are semantically equal to ?. In our

semantics this equality no longer holds | and rightly not!

So our semantics correctly distinguishes some expressions

that Haskell currently identi�es.

Some transformations that are identities in Haskell become

re�nements in our new system. Consider:

lhs = (case e of { True -> f; False -> g }) x

rhs = case e of { True -> (f x); False -> (g x) }

Using e = raise E, x = raise X, and f = g = �v:1, we

get [[lhs]]� = Bad fE;Xg but [[rhs]]� = Bad fEg. Hence,

lhs v rhs, but not lhs = rhs. We argue that it is legitimate

to perform a transformation that increases information |

in this case, changing lhs to rhs reduces uncertainty about

which exceptions can be raised.

We currently lack a systematic way to say which identities

continue to hold, which turn into re�nements, and which

no longer hold. We conjecture that the lost laws deserve

to be lost, and that optimising transformations are either

identities or re�nements. It would be interesting to try to

formalise and prove this conjecture.

5 Variations on the theme

5.1 Asynchronous exceptions

All the exceptions we have discussed so far are synchronous

exceptions (Section 2). If the evaluation of an expression

yields a set of synchronous exceptions, then another eval-

uation of the same expression will yield the same set. But

what about asynchronous exceptions, such as interrupts and

resource-related failures (e.g. timeout, stack overow, heap

exhaustion)? They di�er from synchronous exceptions in

that they perhaps will not recur (at all) if the same pro-

gram is run again. It is obviously inappropriate to regard

such exceptions as part of the denotation of an expression.

Fortunately, they can �t in the same general framework.

We have to enrich the Exception type with constructors

indicating the cause of the exception. Then we simply add

to getException's abilities. Since getException is in the IO

monad, it can easily say \if the evaluation of my argument

goes on for too long, I will terminate evaluation and return

Bad TimeOut", and similarly for interrupts and so on. We

express this formally as follows:

getException v

|x

! return (Bad x)

if x is an asynchronous exception

The |x above the arrow indicates that the transition may

take place only when an asynchronous event x is received

by the evaluator. Notice that v might not be an exceptional

value | it might be say, 42 | but if the event x is received,

getException is nevertheless free to discard v and return

the asynchronous exception instead. In the case of a key-

board interrupt, the event ControlC is injected; in the case

of timeout, some presumed external monitoring system in-

jects the event TimeOut if evaluation takes too long; and so

on.

There is a fascinating wrinkle in the implementation of asyn-

chronous exceptions: when trimming the stack, we must

overwrite each thunk under evaluation with a kind of \re-

sumable continuation", rather than a computation which

raises the exception again. The details are in [13].

9

5.2 Detectable bottoms

There are some sorts of divergence that are detectable by a

compiler or its runtime system. For example, suppose that

black was declared like this:

black = black + 1

Here, black is readily detected as a so-called \black hole"

by many graph reduction implementations. Under these cir-

cumstances, getException black is permitted, but not re-

quired, to return Bad NonTermination instead of going into

a loop! Whether or not it does so is an implementation

choice | perhaps implementations will compete on the skill

with which they detect such errors.

5.3 Fictitious exceptions

There is actually a continuum between our semantics and

the \�xed evaluation order" semantics, which fully deter-

mines which exception is raised. As one moves along the

spectrum towards our proposal, more compiler transforma-

tions become valid | but there is a price to pay. That

price is that the semantics becomes vaguer about which ex-

ceptions can be raised, and about when non-termination

can occur. Our view is that we should optimise for the no-

exception case, accepting that if something does go wrong

in the program, then the semantics does not guarantee very

precisely what exception will show up. An extreme, and

slightly troubling, case is this:

getException loop

Since loop has value ?, getException is, according to our

semantics, justi�ed in returning Bad DivideByZero, or some

other quite �ctitious exception | and in principle a compiler

re�nement might do the same.

We sought a way to give loop the denotation

Bad fNonTerminationg

rather than (the less informative) ?, but we know of no

consistent way to do so. The modelling of non-termination

to include all other behaviours is characteristic of the de-

notational semantics of non-determinism. It means that set

inclusion gives a simple interpretation of program correct-

ness, encompassing both safety and liveness properties. It

ensures that recursion can be de�ned as the weakest �xed

point of a monotonic function, and that this �xed point can

be computed as the limit of a (set-wise) descending chain of

approximations. But what is more important for our pur-

poses is that it gives maximal freedom to the compiler, by

assuming that non-termination is never what the program-

mer intends

5

.

An operational semantics would model more precisely what

happens, and hence would not su�er from the problem of

5

Indeed, there are a number of situations in which it is useful to

be able to assume that a value is not ?. For example, if v is not ?,

then the following law holds:

case v of { True -> e; False -> e } = e

Our compiler has a ag -fno-pedantic-bottoms that enables such

transformations, in exchange for the programmer undertaking the

proof obligation that no sub-expression in the program has value ?.

�ctitious exceptions. Arguably, for reasoning about diver-

gent programs, the programmer should use an operational

semantics anyway. Because, in the end, it seems unlikely

that a compiler will gratuitously report a �ctitious excep-

tion when the program gets into a loop, so this semantic

technicality is unlikely to have practical consequences.

5.4 Pure functions on exceptional values

Is it possible to do anything with an exceptional value other

than choose an exception from it with getException? Fol-

lowing [15], one possibility suggests itself as a new primitive

function (i.e. one not de�nable with the primitives so far

described):

mapException :: (Exception -> Exception) -> a -> a

Semantically, mapException applies its functional argument

to each member of the set of exceptions (if any) in its sec-

ond argument; it does nothing to normal values. From an

implementation point of view, it applies the function to the

sole representative (if any) of that set. Here's an example

of using mapException to catch all exceptions in e and raise

UserError "Urk" instead:

mapException (\x -> UserError "Urk") e

Notice that mapException does not need to be in the IO

monad to preserve determinism. In short, mapException

raises no new technical di�culties, although its usefulness

and desirability might be debatable.

mapException maps one kind of exception to another, but it

doesn't let us get from exceptions back into normal values.

Is it possible to go further? Is it possible, for example, to

ask \is this an exceptional value"?

isException :: a -> Bool

(It would be easy to de�ne isException with a monadic type

a -> IO Bool; the question is whether it can have a pure,

non-monadic, type.) At �rst isException looks reasonable,

because it hides just which exception is being raised | but

it turns out to be rather problematic. What is the value of

the following expression?

isException ((1/0) + loop)

If the compiler evaluates the �rst argument of + �rst, the

result will be True; but if the compiler evaluates the sec-

ond argument of + �rst, the computation will not terminate.

Two di�erent implementations have delivered two di�erent

values!

It is quite possible to give a perfectly respectable denota-

tional semantics for isException | in fact there are two

di�erent such semantics that we might use, the \optimistic"

one

isException (Bad s) = True

isException (Ok v) = False

or the \pessimistic" one

isException (Bad s) = ? if NonTermination 2 s

isException (Bad s) = True if NonTermination 62 s

isException (Ok v) = False

10

The trouble is that neither of these semantics are e�ciently

implementable, because they require the implementation to

detect nontermination. Consider our example

isException ((1/0) + loop)

An implementation that evaluates the arguments of + right-

to-left would evaluate loop before 1/0; hence, the call to

isException would loop, i.e. evaluate to ?, rather than

returning True as the \optimistic" semantics requires. But

conversely, an implementation that evaluates the arguments

of + left-to-right would evaluate 1/0 before loop; hence, the

call to isException would return True, rather than ? as the

\pessimistic" semantics requires. Since we want implemen-

tations to be able to evaluate arguments in any order, nei-

ther the optimistic nor the pessimistic semantics will work.

There are a number of possible things we could say:

1. Because isException is unimplementable, it should be

banned.

2. Programmers may use isException, but when they do

so they undertake a proof obligation that its argument

is not ?. If this can be assumed, the implementation

is in no di�culty (c.f. Section 5.3).

3. The denotational semantics for isException should

be the pessimistic one; to make it implementable, the

language semantics should be changed so that result of

the program is de�ned to be any value that is the same

as or more de�ned than the program's denotation. If

the program yields ?, then any value at all could be

delivered.

This alternative has the undesirable property that a

program that goes into an in�nite loop would be justi-

�ed in returning an IO computation that (say) deleted

your entire �lestore.

4. The denotational semantics for isException should

be the optimistic one; to make it implementable, the

language semantics should be changed so that result

of the program is de�ned to be any value that is the

same as or less de�ned than the program's denotation.

? would always be a valid result.

This alternative has the undesirable property that an

implementation could, in theory, abort with an error

message or fail to terminate for any program at all,

including programs that do not use isException. Still,

in comparison to the previous alternative, at least the

failure mode is much less severe: the semantics would

only allow the implementation would to loop or abort,

not to perform arbitrary I/O operations.

The latter two options would both require a signi�cant

global change to Haskell's semantics, and even then, nei-

ther of them really captures the intended behaviour with

su�cient precision. It would be possible to re�ne these ap-

proaches to give more precision, but only at the cost of some

additional semantic complexity. Therefore we prefer the sec-

ond option, renaming isException to unsafeIsException

to highlight the proof obligation.

Other declarative languages, particularly logic programming

languages such as G�odel and Mercury already make a dis-

tinction between the declarative (i.e. denotational) seman-

tics and the operational semantics similar to that men-

tioned in the fourth possibility above [4]. In Mercury, for

example, the operational semantics allows non-termination

in some situations even though the declarative semantics

speci�es that the program should have a result other than

non-termination. So if our proposal for Haskell were to be

adopted to other languages for which the operational seman-

tics is already incomplete (in the above sense) with respect

to the declarative semantics, then a re�nement of the fourth

alternative might well be the best approach.

6 Other languages

We have described a design for incorporating exceptions into

Haskell. In this section we briey relate our design to that

in other languages.

First, it is clear that our design is somewhat less expressive

than that in other languages; we will take ML as a typical

example. In ML it is posssible to completely encapsulate

a function that makes use of exceptions: one can declare

an exception locally, raise it, and handle it, all without this

implementation becoming visible to the function's caller. In

our design, one cannot handle an exception without using

the IO monad. Furthermore, the IO monad is (by design)

like a trap door: you cannot encapsulate an I/O performing

computation inside a pure function | and rightly not!

Though we do not yet have much experience of using

exceptions in Haskell, we speculate that the fact that

getException is in the IO monad will not prove awkward in

practice, for several reasons:

� Only exception handling, using getException, is af-

fected. One can raise an exception without involving

the IO monad at all.

� Most disaster-recovery exception handling is done near

the top of the program, where all other input/output

is in any case performed.

� Much local exception handling can be done by encod-

ing exceptions as explicit values (Section 2.1).

No doubt there will remain situations where the lack of a

\pure" getException will prove annoying. One alterna-

tive would be to provide an unsafeGetException (analogous

to unsafeIsException; Section 5.4), with associated proof

obligations for the programmer.

Second, the big payo� of our approach is that we lose

no (useful) transformations compared to a guaranteed-

exception-free program. Could the same technique be used

in other languages, such as ML or Java? It is hard to see

how it could apply directly; our approach depends crucially

on distinguishing computations in the IO monad (whose

transformations are restricted by the possibility of side ef-

fects and non-determinism) from purely-functional expres-

sions (whose transformations are unrestricted).

Nevertheless, standard e�ect analyses for ML and Java seek

to �nd which portions of the program cannot raise an ex-

ception, whereas in our system transformations are limited

11

only for those parts of the program that handle exceptions.

We speculate that an e�ect system that focused instead on

the latter instead of the former might yield more scope for

optimisation.

Our work does not directly address the question of how the

exception-raising behaviour of a function should be mani-

fested in its type. Java requires methods to declare which

(checked) exceptions they may throw, but this approach

does not seem to scale well to higher-order languages [8]. In

our design, explicitly-encoded exceptions are certainly man-

ifested in the function's type, but exceptions generated by

raise are not.

7 Conclusion

As usual, implementation is ahead of theory: the Glas-

gow Haskell Compiler (4.0 and later) implements raise and

getException just as described above. If nothing else, this

reassures us that there are no hidden implementation traps.

A useful practical outcome of writing this paper was a clear

idea about what is, and what is not, semantically justi�able

in the programming interface. For example, we originally

implemented a version of isException, without fully un-

derstanding the impact on the semantics. We now know

that this feature would require a signi�cant liberalisation of

Haskell's semantics, one that may not be acceptable to all

Haskell programmers, so it should not be added without due

consideration.

Incidentally, exceptions in the IO monad itself are also now

handled in the same way, which makes the implementation

of the IO monad very much more e�cient, and very much

less greedy on code space. Previously, every >>= operation

had to test for, and propagate, exceptions.

We do not yet have much experience with using exceptions

in Haskell. The proof of the pudding is in the eating. Bon

appetit.

Acknowledgement. We gratefully acknowledge helpful

feedback from Cedric Fournet, Corin Pitcher, Nick Benton,

and the PLDI referees.

References

[1] L. Augustsson, M. Rittri, and D. Synek. On generat-

ing unique names. Journal of Functional Programming,

4:117{123, January 1994.

[2] C. Dornan and K. Hammond. Exception handling in

lazy functional languages. Technical Report CS90/R5,

Department of Computing Science, University of Glas-

gow, Jan 1990.

[3] F. Henderson. Non-deterministic exceptions. Electronic

mail to the haskell mailing list, June 1998.

[4] F. Henderson, T. Conway, Z. Somogyi, and D. Jef-

fery. The Mercury language reference manual. Tech-

nical Report 96/10, Department of Computer Sci-

ence, University of Melbourne, Melbourne, Aus-

tralia, 1996. A more recent version is available via

<http://www.cs.mu.oz.au/mercury/information/doc

umentation.html>.

[5] R. Jones. Tail recursion without space leaks. Journal

of Functional Programming, 2(1):73{80, Jan. 1992.

[6] E. Moggi. Computational lambda calculus and mon-

ads. In IEEE Symposium on Logic in Computer Sci-

ence, June 1989.

[7] A. Mycroft. The theory and practice of transform-

ing call-by-need into call-by-value. In Proc 4th Inter-

national Symposium on Programming, pages 269{281.

Springer Verlag LNCS 83, 1981.

[8] F. Pessaux and X. Leroy. Type-based analysis of un-

caught exceptions. In Proc Principles of Programming

Languages (POPL'99), San Antonio, Jan 1999.

[9] PL Wadler. Comprehending monads. Mathematical

Structures in Computer Science, 2:461{493, 1992.

[10] PL Wadler. How to replace failure by a list of successes.

In Proc Functional Programming Languages and Com-

puter Architecture, La Jolla. ACM, June 1995.

[11] G. Plotkin. Domains. Technical report, Department of

Computer Science, University of Edinburgh, 1983.

[12] A. Reid. Handling Exceptions in Haskell. Research Re-

port YALEU/DCS/RR{1175, Yale University, August

1998.

[13] A. Reid. Putting the spine back in the Spineless Tag-

less G-machine: an implementation of resumable black

holes. In Proc Implementation of Functional Languages

Workshop 1998 (IFL'98). Springer Verlag LNCS (to ap-

pear 1999), Sept 1998.

[14] RJM Hughes. Why functional programming matters.

Computer Journal, 32(2):98{107, April 1989.

[15] RJM Hughes and JT O'Donnell. Expressing and

reasoning about non-deterministic functional pro-

grams. In K. Davis and R. Hughes, editors, Glas-

gow Functional Programming Workshop, pages 308{

328. Springer Workshops in Computing, 1989.

[16] SL Peyton Jones, AJ Gordon, and SO Finne. Concur-

rent Haskell. In 23rd ACM Symposium on Principles of

Programming Languages, St Petersburg Beach, Florida,

pages 295{308. ACM, Jan 1996.

[17] SL Peyton Jones and PL Wadler. Imperative functional

programming. In 20th ACM Symposium on Principles

of Programming Languages (POPL'93), Charleston,

pages 71{84. ACM, Jan 1993.

[18] J. Spivey. A functional theory of exceptions. Science of

Computer Programming, 14:25{43, Jul 1990.

[19] J. William, A. Aiken, and E. Wimmers. Program trans-

formation in the presence of errors. In Proc Principles

of Programming Languages (POPL'90), San Francisco,

pages 210{217. ACM, Jan 1990.

[20] WJ Cody et al. A proposed radix- and word-length in-

dependent standard for oating point arithmetic. IEEE

Micro, 4(4):86{100, Aug. 1984.

12

