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Abstract

The design (as opposed to the choice and use) of data structures has been
the subject of relatively little study in the context of formal methods. In this
paper, we introduce our ideas on how data structures are designed.

1 Introduction

The sciences do not try to explain, they hardly even try to interpret,
they mainly make models. By a model is meant a mathematical construct which,
with the addition of certain verbal interpretations, describes observed phenomena.

The justification of such a mathematical construct is solely and precisely
that it is expected to work.

John von Neumann

Implementation of a specification using data refinement is (roughly speaking) based
on repeatedly choosing part of the specification and replacing it with a refinement
which does “at least as much” and is (presumably) more implementable or efficient.
Choosing a refinement may often be viewed as mere selection of a previously devel-
oped refinement of a similar specification from some form of library; but occasionally
a new refinement must be designed — thus extending the library. Unfortunately,
very little has been written about how these new data structures may be designed

[1], [2] and [3] being the most notable exceptions.

This paper is an introduction to the way we think about the design of efficient
data structures. We shall be concerned mostly with time efficiency although we
recognise that space efficiency is also important. We begin by briefly describing
our notation and semantics. We then examine in some detail an example imple-
mentation of a specification paying particular attention to the data structure and
attempting to draw general conclusions from our analysis. Finally, we discuss some
of the problems with our approach.

2 Definitions

Miranda is used for our example specification. We give a brief overview of Miranda
notation below. Further details may be found in [4].

e [A] is the set of all lists [ay, ...a,,] with elements drawn from A and m € N.

e f:: A — B states that f is a (Miranda) function with source type A and
target type B.

o (++) = [A] = ([A] — [A]); [a, - - am]H[ami1s - - - an) = [a1, - Gy Qg1 - - - Gy

e length :: [A] — num; lengthla,...a,] = m.



e head :: [A] — A; head|a,...a,] = a1.
o tail :: [A] — [A]; taillay, ag, . .. ap] = [ag, ... a4y
e init :: [A] — [A]; init(ay,...apm 1, 0] = a1, ... Qp_1].

We may consider functions as sets of pairs in the usual set-theoretic way. For
example, the functions which doubles every natural number is:

double = {{0,0),(1,2), (2,4), (3,6),...}

For any function f: A — B, dom f = A and ran f = B.
We regard data structures as the representations of states. In order to apply
our approach, we shall assume that the specifier has defined the following sets:

o A set X of state names.

e A set M of modifiers. Modifiers are names of total operations with arity
X — X. X is closed under application of the operations named in M.

e A set O of observers. Observers are names of total operations with domain X
and range # X.

Informally, the basis for the specifier’s choice of M and O is that modifiers are
used to change the state and observers are used to inspect the state.

Our semantics (of specifications) is a special case of observational equivalence
to the initial model of a specification.

Let R be a set of representations of the states named in X, rep a function map-
ping state names to representations, imp a function mapping operations (i.e. mod-
ifiers and observers) to their implementations. Then, we require that for all m €
M, o € O the diagrams in figures 1 and 2 commute.
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Figure 1 Figure 2

That is,

Correct((imp,rep)) & Va: X, m:M,o:0e (impm)(repz) = rep(mz)A
(impo)(repz) = ox

One of the consequences of this definition is that representations must be ad-
equate — that is only states which cannot be distinguished using the available
operations (i.e. observers and modifiers) may have the same representation as each
other. This is an important property because it allows us to test a representation
independently of the implementations of the operations.

Formalising the notion of states being indistinguishable using only a set of ob-
servers O and any sequence of modifiers from [M], we define the equivalence =

(mod O):

z =y (mod O) def Vn:N,m;...m,: M,0:Oeo0m;...m,z=o0mi...m,Yy



Given a representation function rep, we say that rep is adequate iff Adequate(rep).

Adequate(rep) def Vr,y: X erepx =repy = r =y (modO)

We mention the special case that, if rep is an injection, rep is adequate.

Finally, we intend that specifications will be implemented in a number of stages
and therefore we assume that the representation of the target type of the observers
will be performed separately (if at all).

3 Analysis Of A Data Structure

In order to gain a better understanding of data structures, we examine a typical
implementation of a double ended queue  gradually reversing the design process
which (we believe) created it.

We begin by giving an example specification and an implementation of it; re-
lating some of the definitions given in the previous section to the specification. We
then consider data structures, starting with structural aspects and then looking at
the values stored in a data structure. Finally we summarise this section with an
outline of our approach.

3.1 A Specification And Its Implementation

The queue specification is given in figure 3. For ease of comprehension we use
Miranda for our specification. Our use of a programming language for the specifi-
cation might prompt the reader to think of our specification as an implementation.
We point out that the distinction between the two is rather fuzzy and that, since
our approach is based on the semantics of the specification rather than on more
syntactic aspects, any distinction which may exist between specifications and imple-
mentations is avoided. As a consequence we mention that it is perfectly legitimate
to consider our method as a (somewhat indirect) approach to program transforma-
tion.

queue == [char]

taggedChar ::= Tagc char | Error

eq 11 queue | empty queue
front :: queue -> taggedChar | front of queue
add :: num -> queue -> queue | add to rear

rem :: queue —> queue | remove from rear
deq :: queue -> queue | dequeue from front
eq = [1]

front [] = Error

front q = Tagc head q

rem [] = []

rem q = init q

deq [1 = [1

deq q = tail q
add a q = q + [a]

Figure 3



Note that we have used the composite type taggedChar to make front total.
In our discussion, we shall occasionally refer to the length of a queue, this is simply
the length of the list representing the queue in the specification.

In this example, the only sensible choice of state names is the set of all terms
of type queue and, because of their arity and usage, rem and deq are modifiers and
front is an observer. Intuitively, add is also a modifier; we use partial application
to produce the functions (add‘a’), (add‘b’), ...which have the correct arity for
modifiers.

The resulting sets are:

e X ={eq,(add‘a’)eq, (add‘b’)eq,deq(add‘a’)eq, (add‘c’) remeq, ...}
e M = {rem,deq, (add‘a’), (add‘b?),...}
e O = {front}

Our implementation (figure 4) is in a Pascalesque language and uses linked
data structures. It is intended to be similar to implementations which would be
derived by any competent programmer. Note that we have used the composite
type taggedChar from the specification and that as we mentioned at the end of
section 2, this type would have to be implemented (perhaps by a variant record)
before the implementation could be used.

type dg = record front, rear : “cell end;
cell = record
item © num;
next, prev : “cell

end;
var q:dg;
procedure FE(Q);
begin g¢.front := nil; q.rear := nil end;

function FRONT: taggedChar,
begin
if q¢.front # nil
then FRONT := Tagc q.front .item
else FRONT := Error
end;

procedure ADD/(z:char);

var t: cell;
begin
new(t); t .item := z; t .next:=nil; ¢t .prev := q.rear;
if g.rear # nil
then q.rear”.next := t
else q.front :=t;
g.rear := t end
end;

procedure DFEQ);



var t: cell;
begin
if g.front # nil
then begin
t:=q.front; q.front := q.front " .next;
if q.front # nil
then g¢.front .prev := nil
else ¢.rear:=nil;
dispose(t)
end
end;

procedure REM;
var t: cell;
begin
if ¢q.rear # nil
then begin
t:=q.rear; q.rear := q.rear’ .prev;
if g.rear # nil
then g¢.rear”.next:=nil
else ¢.front:=nil;
dispose(t)
end
end;

Figure 4

We shall consider linked data structures as being made up of a number of nodes
connected by unidirectional links and accessed from outside the structure by entry
points. Figure 5 shows the representation used by the example implementation
using the traditional style of data structure diagram [5, pp. 44 45].

front rear entry point—
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<

\

linkv cell data cell
Figure 5 Key

Each node contains a number of labelled link cells (e.g. prev and next) and
labelled data cells (e.g. item). We shall refer to the node pointed to by an entry
point p as the target of p or as the p node. We shall refer to (the node containing)
the link cell containing a link [ as the source (node/cell) of | and the node pointed
to by [ as the target node of [. We allow the contents of a data cell to be structured
using (variant) records, arrays, etc. and so, without loss of generality, we shall
assume that each node contains a single data cell.

We define a path in a data structure to be a list of link labels. If there is a
sequence of nodes [ng, . .. n,,] joined by a sequence of links [l1, . .. [,,] such
that the source and target of each link [; are n;_; and n; respectively,



then we say there is a path [p1,...pw] from ng to n, where p; is the
label of the link cell storing ;.

For example, in figure 5, there are the following:
e a path [next,next| from the front node to the rear node;
e a path [prev,prev] from the rear node to the front node;

e a path [next,prev,next| from the front node to the central node;
°

In order to discuss efficiency, we require metrics. As a crude time metric, we
shall count the number of primitive operations (traversal, removal, modification,
etc. of entry points, links, values, etc.) and, as a space metric, the number of data
cells, link cells and entry points in a representation.

3.2 Entry Points

Consider the use of entry points made by the implementations of observers and
modifiers.

e Observers such as FRONT use entry points to determine which value to return.
The position of observation points (i.e. entry points used by the observer) is
therefore determined only by the choice of representation of the current state.

e Modifiers such as ADD(‘e’) and REM use entry points to determine which
change to make and then to make that change. Thus, the position of update
points (i.e. entry points used to change the data structure) is determined
by both the representation of the current state and its relationship to the
representations of the states derivable from it.

Clearly the rear entry point is an update point; but the front entry point
appears to be both an update point and an observation point. We believe that each
entry point was introduced for a single specific purpose and that the front entry
point is therefore the result of fusing two previously separate entry points one
an update point, the other an observation point.

We may generalise this idea of fusing two entry points with the same target to
fusing two entry points with “nearby targets”. We refine the term “nearby targets”
with “approximation” which is defined as follows:

Let b and ¢ be entry points, p a path and R a class of representations of
states. b p-approximates ¢ in R iff in every representation r € R, there
is a path p from b to c.

For example, an entry point whose target is the penultimate node in a queue
(i.e. the node adjacent to the rear node) is [prev]-approximated by the rear node
(in all queues of length 2 or more). Such an entry point has indeed been “optimised
out” REM requires access to this node to allow the link to the old rear node to
be removed.



We may generalise this notion still further by allowing the path defining the
path from b to ¢ to be a function of the representation. In this way, the rear entry
point could be “optimised out” since it may be reached by following the next links
from the front cell. Since the cost of this reduction in space is relatively high, this
optimisation would probably not be justifiable purely in terms of the time-space
tradeoff it represents. However, in examples like a priority queue [6, pp. 150-151]
(or almost any other problem which is usually solved using some form of search) the
cost of having an entry point at every cell where the implementation of a modifier
may make a change is quite considerable e.g. every ADD(x) in a priority queue could
require access to a different cell and so an individual entry point is required for
every x € char. The only way to avoid this problem is to introduce loops using
this generalisation of approximation (perhaps introducing additional structure to
aid the location of the cell to be examined or modified). The problem of searching
is a large one with many different solutions and so we shall not discuss it further
here.

3.3 Links

We turn now to considering the use of links. With the exception of using links when
one entry point approximates another, their sole purpose is to allow entry points to
be moved when the implementation of a modifier is applied. This can be seen in the
prev links whose only purpose (apart from the [prev]-approximation mentioned
earlier) is to allow the rear update point to be moved when REM is applied.

From this it follows that after having:

1. chosen the parts of the representation of each state to be changed when the
implementation of each modifier is applied; and

2. introduced entry points providing access to these points,

links are introduced between temporally adjacent targets of each entry point (where
applying operations to the state corresponds to the flow of time). That is, if an
entry point p points to a node b in the representation of some state x and p points
to a node ¢ in the representation of oz (for some o € M), then there should be a
link from b to ¢ in the representation of z (assuming c is in the representation of z).

Of course, since we have added new links to the representation, further changes
will need to be made by the implementation of each modifier and so more entry
points are introduced. If these cannot be fused with or approximated by the existing
entry points, further links must be added requiring still more complex implemen-
tations of modifiers, more entry points, and so on ad infinitum. We thus see one
of the other uses of fusion and approximation as being an attempt to avoid getting
stuck in this loop.

Although it is not used in this example, there is a counterpart of entry point
fusion for links. Clearly, if the links from two link cells b and ¢ have the same target
in all representations, they provide the same information and we may fuse the cells.
Thus if there were links “running parallel to” the next links in the representation
of the queue, we could fuse them with a substantial saving in space.

We may generalise this using link approzimation in an analogous way to our
generalisation of node fusion. We define link approximation as follows:



Let [ be a link cell label, p a path and R a class of representations of
states. p approximates [ in R iff in every representation r € R, for every
[-link with source b and target c, there is a path p from b to c.

So far, we have discussed the “structural part” of the representation (i.e. links
and entry points) and we have shown how the design of the structure is largely
determined by:

e the choice of where to store the information required to make the observations;
and

e the choice of where the modifiers access to change the representation.

We shall turn now to the “data part” of the representation where these choices are
made.

3.4 Data Related Aspects Of Design

The task in designing the “data part” of an implementation is, essentially, deciding
what features of the state to store in each representation so that the observers and
the modifiers may be efficiently implemented. In this section, we look first at how
we may represent the data part and then at the demands placed on the data part
by correctness and efficiency requirements.

3.4.1 Adequate Data Parts

We would normally start the design with an adequate data part and add structure
to it. As we add structure, some of the information in the data part is encoded
in the structure and so we may simplify the data part. In this way, information is
gradually moved from the data part into the structural part of the representation.
When going the other way (i.e. removing the structure), information must be added
to the data part so that we know what the contents of each node tells us about the
state.

Since each representation is the result of applying a function (i.e. rep) to the
state name, the contents of each node must also be a function of the state name. We
shall label each node with a unique function name such that, in the representation
of a state called x, the contents of the node labelled with a function name f, is the
value denoted by f(z). For example, in the representation of queues, we may label
nodes as in figure 6

front rear
"|b ¢ dlr
front front .deq front .deq.deq
Figure 6

To put this more formally, let N be a set of node labels (i.e. function names),
V' the set of values that may be stored in a data cell and F: N — (X — V) a
naming function associating node labels with functions. We may describe the data
part of the representation of a given state (wrt a given choice of F') using a function



assiging values to node labels. We shall use the function data-repy: X — (N — V)
for this purpose and note that data-rep.x C {(f,(F f)z)| f € N}.
In our queue example, we may name the functions using the function deqgs:

degs = {(0, front), (1, front .deq), (2, front .deq.deq),. ..}

This may be used to give the following description of the data part of the represen-
tation of queues:

data-repgq, v = {(i, (degsi) ) | 0 <7 < lengthu}
We may readily see that this data part is adequate since, for any queue ¢:
q = [front ¢, front .deqq, front .deq.deqgq, .. .]

i.e. the list used to represent the state in the specification may be reconstructed
from the data part of the representation.

3.4.2 Efficient Data Parts

After adequacy, our next major concern is how efficiently the data structure may
be used. There are two things contributing to the efficiency (or inefficiency) of the
implementation of an operation: the number of nodes accessed and the difficulty
of the manipulation of the values stored in them. Often the cost of manipulating
the values is insignificant compared to the cost of gathering them and so we shall
emphasise the cost of accessing nodes.

From this, we derive the following definition of efficiency:

Let A and B be implementations of a specification and let S be a set
of sequences of operations (i.e. modifiers and observers). A is more effi-
cient than B for S if the number of nodes accessed when executing A’s
implementation of S is less than the number of nodes accessed when
executing B’s implementation of S.

If desired, this could be generalised by assigning a weight to every sequence
and comparing the weighted sums of the number of nodes accessed to execute each
sequence in A and B.

In order to achieve this efficiency goal, we would expect that a good data rep-
resentation would require only a small number of nodes to be accessed in order to
determine the result of any observation.

In our queue example, FRONT need only examine one node (at most ) to determine
which value to return and hence is an efficient operation.

Suppose though that we add an observer to the specification which returns the
length of the queue. We may use the same data part (i.e. the data part given above
is still adequate) but, to determine the length of the queue, one implementation of
the observer would have to count the nodes in the representation and so would be
rather inefficient. However, if we added another node (which stored the length of
the queue) to the representation, we could implement the length operation more
efficiently because the desired value (i.e. the length) can be calculated by examining
a small number (1 here) of nodes.

If we ignore the choice of imperative implementation and do not consider im-
plementations which modify the representation of the state, implementation of the



modifiers is rather similar to implementation of the observers — requiring only the
calculation of the value of each node in the new representation from those in the old
representation. Since all new nodes and almost all old nodes have to be accessed by
implementations of the modifiers, an efficient representation would usually have a
small number of nodes. (We are also less justified in ignoring the cost of calculating
each value.)

However, allowing the reuse of parts of the representation of a state in the
representation of its successor states makes it possible to significantly increase the
efficiency of implementations, if we can avoid accessing most of the nodes in the
representation being modified. Since a node may only be modified if it is accessed,
this means that in an efficient representation, most of the nodes in a state x must
have the same contents (and links) as nodes in the representation of its successors ox
(for 0 € M). For example, figure 7 shows the effect of the modifier DEQ on the data
part of the representation in figure 6 and the way in which the nodes in the original
representation are reused for the representation of the state after applying DEQ.

front rear
" c d| " { 0,/1,/2 }
v C d v { 0 , 1 }
Figure 7

In this example, the choice of how to reuse nodes is obvious; in more complex
examples, it is less so — often the data part must be redesigned to ensure that
features of the state which change independently of each other are stored separately.

The above discussion deals with what appear to be the major issues in the design
of the data part of an efficient representation:

e the data part should be adequate;

e it should be possible to calculate the result of an observation by examining a
few nodes and so the representation should store features of the state closely
related to what can be observed;

e it should be possible to modify a representation by accessing only a few
nodes, and so the data parts of adjacent states (z and ox) should be very
similar (i.e. there should be a one-to-one function ¢, ,: dom(data-repx) —
dom(data-rep ox) which is defined for most of its domain and for which cor-
responding nodes have the same contents.

e there should be a description of how to calculate the successor of each rep-
resentation which respects the correspondence between node labels (i.e. if
n € dom(e, ), the node labelled n in the representation of z is reused as the
node labelled ¢, , n in the representation of o x.)

We shall now consider the entire design process.



3.5 Summary

To summarise our analysis, when designing a data structure one should first choose
the data part and then design a structure to manipulate and access it.

The data part of the representation should initially be adequate; it should store
the information required by the implementation of the observers in a small number
of nodes; and it should have similar representations for adjacent states.

Starting with an adequate data part, a description of how to calculate the result
of applying an observation and of how to calculate the data part of a state from its
predecessor, the structural part is gradually added. As structure is designed and
added, the data part may be simplified by removing nodes or labels which are no
longer required for adequacy.

Then, observation points are added to the representation of each state so that
they provide access to the cells from which the result of observing that state is
calculated. Similarily, update points are added, thus allowing the values of new
cells to be calculated and various changes to be made. After fusing entry points
and eliminating those entry points which we wish to approximate, links are added in
the representation of each state along the routes of the entry points. Links are fused
if possible and desirable and, if necessary, the cycle repeats from the introduction
of the entry points.

4 Conclusions

We have presented our ideas on how data structures can be designed. At present
we recognise the following limitations in our view of the design process:

1. Although we have an abstract machine (not reported here) which may be used
to describe an implementation, further work is required to determine under
which circumstances the “optimisations” described here actually do result in
a more efficient implementation.

2. We have no clear idea of how a good data part may be designed. This is one
of our major interests at the present moment.

3. Throughout our discussion, we have considered how to implement an obser-
vation of a particular state, how to change the representation of a particular
state into one of its successors, etc. Generating an implementation, requires
that we generalise the implementations of each observer and of each modifier
into implementations which work for any state. Our approach currently does
not consider such generalisation.

4. As yet we are unable to cope adequately with problems requiring some form
of search/lookup for their solution. However, since our problem seems only
to be the large (usually infinite) number of entry points introduced, it seems
plausible that a few techniques for reducing the number of entry points (such
as use of hash tables, search trees, etc.) would largely overcome this limitation.

5. We cannot handle specifications permitting a range of possible values for a
given observation. (For example, a common observer for sets is a choice
operation which returns one of the elements of the set it is applied to.) This
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problem can be avoided by strengthening the specification until there is only
a single value for every observation. However, this solution is not entirely
satisfactory since the information required to make a good (i.e. efficiency
inducing) choice of how to strengthen the implementation is not available
until implementation has begun.
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