
Designing Data StructuresAlastair ReidAbstractThe design (as opposed to the choice and use) of data structures has beenthe subject of relatively little study in the context of formal methods. In thispaper, we introduce our ideas on how data structures are designed.1 Introduction The sciences do not try to explain, they hardly even try to interpret,they mainly make models. By a model is meant a mathematical construct which,with the addition of certain verbal interpretations, describes observed phenomena.The justi�cation of such a mathematical construct is solely and preciselythat it is expected to work.| John von NeumannImplementation of a speci�cation using data re�nement is (roughly speaking) basedon repeatedly choosing part of the speci�cation and replacing it with a re�nementwhich does \at least as much" and is (presumably) more implementable or e�cient.Choosing a re�nement may often be viewed as mere selection of a previously devel-oped re�nement of a similar speci�cation from some form of library; but occasionallya new re�nement must be designed | thus extending the library. Unfortunately,very little has been written about how these new data structures may be designed| [1], [2] and [3] being the most notable exceptions.This paper is an introduction to the way we think about the design of e�cientdata structures. We shall be concerned mostly with time e�ciency although werecognise that space e�ciency is also important. We begin by brie
y describingour notation and semantics. We then examine in some detail an example imple-mentation of a speci�cation paying particular attention to the data structure andattempting to draw general conclusions from our analysis. Finally, we discuss someof the problems with our approach.2 De�nitionsMiranda is used for our example speci�cation. We give a brief overview of Mirandanotation below. Further details may be found in [4].� [A] is the set of all lists [a1; : : : am] with elements drawn from A and m 2 IN.� f :: A ! B states that f is a (Miranda) function with source type A andtarget type B.� (++) :: [A]! ([A]! [A]); [a1; : : : am]++[am+1; : : : an] = [a1; : : : am; am+1; : : : an].� length :: [A]! num; length[a1; : : : am] = m.1

� head :: [A]! A; head[a1; : : : am] = a1.� tail :: [A]! [A]; tail[a1; a2; : : : am] = [a2; : : : am].� init :: [A]! [A]; init[a1; : : : am�1; am] = [a1; : : : am�1].We may consider functions as sets of pairs in the usual set-theoretic way. Forexample, the functions which doubles every natural number is:double = fh0; 0i; h1; 2i; h2; 4i; h3; 6i; : : :gFor any function f :A! B, dom f = A and ran f = B.We regard data structures as the representations of states. In order to applyour approach, we shall assume that the speci�er has de�ned the following sets:� A set X of state names.� A set M of modi�ers. Modi�ers are names of total operations with arityX ! X. X is closed under application of the operations named in M .� A set O of observers. Observers are names of total operations with domain Xand range 6= X.Informally, the basis for the speci�er's choice of M and O is that modi�ers areused to change the state and observers are used to inspect the state.Our semantics (of speci�cations) is a special case of observational equivalenceto the initial model of a speci�cation.Let R be a set of representations of the states named in X, rep a function map-ping state names to representations, imp a function mapping operations (i.e. mod-i�ers and observers) to their implementations. Then, we require that for all m 2M , o 2 O the diagrams in �gures 1 and 2 commute.
R RX X--? ?m

impmrep repFigure 1 RX ran o������-? orep imp oFigure 2That is,Correct(himp; repi) def= 8x : X;m : M; o : O � (impm)(rep x) = rep(mx)^(imp o)(rep x) = oxOne of the consequences of this de�nition is that representations must be ad-equate | that is only states which cannot be distinguished using the availableoperations (i.e. observers and modi�ers) may have the same representation as eachother. This is an important property because it allows us to test a representationindependently of the implementations of the operations.Formalising the notion of states being indistinguishable using only a set of ob-servers O and any sequence of modi�ers from [M], we de�ne the equivalence �(modO):x � y (modO) def= 8n : IN; m1 : : :mn :M; o:O � om1 : : :mnx = om1 : : :mny

Given a representation function rep, we say that rep is adequate i� Adequate(rep).Adequate(rep) def= 8x; y : X � rep x = rep y) x � y (modO)We mention the special case that, if rep is an injection, rep is adequate.Finally, we intend that speci�cations will be implemented in a number of stagesand therefore we assume that the representation of the target type of the observerswill be performed separately (if at all).3 Analysis Of A Data StructureIn order to gain a better understanding of data structures, we examine a typicalimplementation of a double ended queue | gradually reversing the design processwhich (we believe) created it.We begin by giving an example speci�cation and an implementation of it; re-lating some of the de�nitions given in the previous section to the speci�cation. Wethen consider data structures, starting with structural aspects and then looking atthe values stored in a data structure. Finally we summarise this section with anoutline of our approach.3.1 A Speci�cation And Its ImplementationThe queue speci�cation is given in �gure 3. For ease of comprehension we useMiranda for our speci�cation. Our use of a programming language for the speci�-cation might prompt the reader to think of our speci�cation as an implementation.We point out that the distinction between the two is rather fuzzy and that, sinceour approach is based on the semantics of the speci�cation rather than on moresyntactic aspects, any distinction which may exist between speci�cations and imple-mentations is avoided. As a consequence we mention that it is perfectly legitimateto consider our method as a (somewhat indirect) approach to program transforma-tion.queue == [char]taggedChar ::= Tagc char j Erroreq :: queue jj empty queuefront :: queue -> taggedChar jj front of queueadd :: num -> queue -> queue jj add to rearrem :: queue -> queue jj remove from reardeq :: queue -> queue jj dequeue from fronteq = []front [] = Errorfront q = Tagc head qrem [] = []rem q = init qdeq [] = []deq q = tail qadd a q = q ++ [a]Figure 3

Note that we have used the composite type taggedChar to make front total.In our discussion, we shall occasionally refer to the length of a queue, this is simplythe length of the list representing the queue in the speci�cation.In this example, the only sensible choice of state names is the set of all termsof type queue and, because of their arity and usage, rem and deq are modi�ers andfront is an observer. Intuitively, add is also a modi�er; we use partial applicationto produce the functions (add`a'), (add`b'), . . . which have the correct arity formodi�ers.The resulting sets are:� X = feq; (add`a')eq; (add`b')eq; deq(add`a')eq; (add`c') rem eq; : : :g� M = frem; deq; (add`a'); (add`b'); : : :g� O = ffrontgOur implementation (�gure 4) is in a Pascalesque language and uses linkeddata structures. It is intended to be similar to implementations which would bederived by any competent programmer. Note that we have used the compositetype taggedChar from the speci�cation and that as we mentioned at the end ofsection 2, this type would have to be implemented (perhaps by a variant record)before the implementation could be used.type dq = record front, rear : ^cell end;cell = recorditem : num;next, prev : ^cellend;var q:dq;procedure EQ;begin q.front := nil; q.rear := nil end;function FRONT: taggedChar;beginif q.front 6= nilthen FRONT := Tagc q.front^.itemelse FRONT := Errorend;procedure ADD(x:char);var t:^cell;beginnew(t); t^.item := x; t^.next:=nil; t^.prev := q.rear;if q.rear 6= nilthen q.rear^.next := telse q.front :=t;q.rear := t endend;procedure DEQ;

var t:^cell;beginif q.front 6= nilthen begint:=q.front; q.front := q.front^.next;if q.front 6= nilthen q.front^.prev := nilelse q.rear:=nil;dispose(t)endend;procedure REM;var t:^cell;beginif q.rear 6= nilthen begint:=q.rear; q.rear := q.rear^.prev;if q.rear 6= nilthen q.rear^.next:=nilelse q.front:=nil;dispose(t)endend;Figure 4We shall consider linked data structures as being made up of a number of nodesconnected by unidirectional links and accessed from outside the structure by entrypoints. Figure 5 shows the representation used by the example implementationusing the traditional style of data structure diagram [5, pp. 44{45].b�� -� c -� d ��?front ?rear
Figure 5 -link??entry point -

data cell6link cell���� KeyEach node contains a number of labelled link cells (e.g. prev and next) andlabelled data cells (e.g. item). We shall refer to the node pointed to by an entrypoint p as the target of p or as the p node. We shall refer to (the node containing)the link cell containing a link l as the source (node/cell) of l and the node pointedto by l as the target node of l. We allow the contents of a data cell to be structuredusing (variant) records, arrays, etc. and so, without loss of generality, we shallassume that each node contains a single data cell.We de�ne a path in a data structure to be a list of link labels. If there is asequence of nodes [n0; : : : nm] joined by a sequence of links [l1; : : : lm] suchthat the source and target of each link li are ni�1 and ni respectively,

then we say there is a path [p1; : : : pm] from n0 to nm where pi is thelabel of the link cell storing li.For example, in �gure 5, there are the following:� a path [next; next] from the front node to the rear node;� a path [prev; prev] from the rear node to the front node;� a path [next; prev; next] from the front node to the central node;� ...In order to discuss e�ciency, we require metrics. As a crude time metric, weshall count the number of primitive operations (traversal, removal, modi�cation,etc. of entry points, links, values, etc.) and, as a space metric, the number of datacells, link cells and entry points in a representation.3.2 Entry PointsConsider the use of entry points made by the implementations of observers andmodi�ers.� Observers such as FRONT use entry points to determine which value to return.The position of observation points (i.e. entry points used by the observer) istherefore determined only by the choice of representation of the current state.� Modi�ers such as ADD(`e') and REM use entry points to determine whichchange to make and then to make that change. Thus, the position of updatepoints (i.e. entry points used to change the data structure) is determinedby both the representation of the current state and its relationship to therepresentations of the states derivable from it.Clearly the rear entry point is an update point; but the front entry pointappears to be both an update point and an observation point. We believe that eachentry point was introduced for a single speci�c purpose and that the front entrypoint is therefore the result of fusing two previously separate entry points | onean update point, the other an observation point.We may generalise this idea of fusing two entry points with the same target tofusing two entry points with \nearby targets". We re�ne the term \nearby targets"with \approximation" which is de�ned as follows:Let b and c be entry points, p a path and R a class of representations ofstates. b p-approximates c in R i� in every representation r 2 R, thereis a path p from b to c.For example, an entry point whose target is the penultimate node in a queue(i.e. the node adjacent to the rear node) is [prev]-approximated by the rear node(in all queues of length 2 or more). Such an entry point has indeed been \optimisedout" | REM requires access to this node to allow the link to the old rear node tobe removed.

We may generalise this notion still further by allowing the path de�ning thepath from b to c to be a function of the representation. In this way, the rear entrypoint could be \optimised out" since it may be reached by following the next linksfrom the front cell. Since the cost of this reduction in space is relatively high, thisoptimisation would probably not be justi�able purely in terms of the time-spacetradeo� it represents. However, in examples like a priority queue [6, pp. 150{151](or almost any other problem which is usually solved using some form of search) thecost of having an entry point at every cell where the implementation of a modi�ermay make a change is quite considerable e.g. every ADD(x) in a priority queue couldrequire access to a di�erent cell and so an individual entry point is required forevery x 2 char. The only way to avoid this problem is to introduce loops usingthis generalisation of approximation (perhaps introducing additional structure toaid the location of the cell to be examined or modi�ed). The problem of searchingis a large one with many di�erent solutions and so we shall not discuss it furtherhere.3.3 LinksWe turn now to considering the use of links. With the exception of using links whenone entry point approximates another, their sole purpose is to allow entry points tobe moved when the implementation of a modi�er is applied. This can be seen in theprev links whose only purpose (apart from the [prev]-approximation mentionedearlier) is to allow the rear update point to be moved when REM is applied.From this it follows that after having:1. chosen the parts of the representation of each state to be changed when theimplementation of each modi�er is applied; and2. introduced entry points providing access to these points,links are introduced between temporally adjacent targets of each entry point (whereapplying operations to the state corresponds to the
ow of time). That is, if anentry point p points to a node b in the representation of some state x and p pointsto a node c in the representation of �x (for some � 2 M), then there should be alink from b to c in the representation of x (assuming c is in the representation of x).Of course, since we have added new links to the representation, further changeswill need to be made by the implementation of each modi�er and so more entrypoints are introduced. If these cannot be fused with or approximated by the existingentry points, further links must be added requiring still more complex implemen-tations of modi�ers, more entry points, and so on ad in�nitum. We thus see oneof the other uses of fusion and approximation as being an attempt to avoid gettingstuck in this loop.Although it is not used in this example, there is a counterpart of entry pointfusion for links. Clearly, if the links from two link cells b and c have the same targetin all representations, they provide the same information and we may fuse the cells.Thus if there were links \running parallel to" the next links in the representationof the queue, we could fuse them with a substantial saving in space.We may generalise this using link approximation in an analogous way to ourgeneralisation of node fusion. We de�ne link approximation as follows:

Let l be a link cell label, p a path and R a class of representations ofstates. p approximates l in R i� in every representation r 2 R, for everyl-link with source b and target c, there is a path p from b to c.So far, we have discussed the \structural part" of the representation (i.e. linksand entry points) and we have shown how the design of the structure is largelydetermined by:� the choice of where to store the information required to make the observations;and� the choice of where the modi�ers access to change the representation.We shall turn now to the \data part" of the representation where these choices aremade.3.4 Data Related Aspects Of DesignThe task in designing the \data part" of an implementation is, essentially, decidingwhat features of the state to store in each representation so that the observers andthe modi�ers may be e�ciently implemented. In this section, we look �rst at howwe may represent the data part and then at the demands placed on the data partby correctness and e�ciency requirements.3.4.1 Adequate Data PartsWe would normally start the design with an adequate data part and add structureto it. As we add structure, some of the information in the data part is encodedin the structure and so we may simplify the data part. In this way, information isgradually moved from the data part into the structural part of the representation.When going the other way (i.e. removing the structure), information must be addedto the data part so that we know what the contents of each node tells us about thestate.Since each representation is the result of applying a function (i.e. rep) to thestate name, the contents of each node must also be a function of the state name. Weshall label each node with a unique function name such that, in the representationof a state called x, the contents of the node labelled with a function name f , is thevalue denoted by f(x). For example, in the representation of queues, we may labelnodes as in �gure 6
b�� -� c -� d ��?front ?rearfront front : deq front : deq : deqFigure 6To put this more formally, let N be a set of node labels (i.e. function names),V the set of values that may be stored in a data cell and F :N ! (X ! V) anaming function associating node labels with functions. We may describe the datapart of the representation of a given state (wrt a given choice of F) using a function

assiging values to node labels. We shall use the function data-repF :X ! (N ! V)for this purpose and note that data-repF x � fhf; (F f)xi j f 2 Ng.In our queue example, we may name the functions using the function deqs:deqs = fh0; fronti; h1; front : deqi; h2; front : deq : deqi; : : :gThis may be used to give the following description of the data part of the represen-tation of queues:data-repdeqs x = fhi; (deqs i) xi j 0 � i < length xgWe may readily see that this data part is adequate since, for any queue q:q = [front q; front : deq q; front : deq : deq q; : : :]i.e. the list used to represent the state in the speci�cation may be reconstructedfrom the data part of the representation.3.4.2 E�cient Data PartsAfter adequacy, our next major concern is how e�ciently the data structure maybe used. There are two things contributing to the e�ciency (or ine�ciency) of theimplementation of an operation: the number of nodes accessed and the di�cultyof the manipulation of the values stored in them. Often the cost of manipulatingthe values is insigni�cant compared to the cost of gathering them and so we shallemphasise the cost of accessing nodes.From this, we derive the following de�nition of e�ciency:Let A and B be implementations of a speci�cation and let S be a setof sequences of operations (i.e. modi�ers and observers). A is more e�-cient than B for S if the number of nodes accessed when executing A'simplementation of S is less than the number of nodes accessed whenexecuting B's implementation of S.If desired, this could be generalised by assigning a weight to every sequenceand comparing the weighted sums of the number of nodes accessed to execute eachsequence in A and B.In order to achieve this e�ciency goal, we would expect that a good data rep-resentation would require only a small number of nodes to be accessed in order todetermine the result of any observation.In our queue example, FRONT need only examine one node (at most) to determinewhich value to return and hence is an e�cient operation.Suppose though that we add an observer to the speci�cation which returns thelength of the queue. We may use the same data part (i.e. the data part given aboveis still adequate) but, to determine the length of the queue, one implementation ofthe observer would have to count the nodes in the representation and so would berather ine�cient. However, if we added another node (which stored the length ofthe queue) to the representation, we could implement the length operation moree�ciently because the desired value (i.e. the length) can be calculated by examininga small number (1 here) of nodes.If we ignore the choice of imperative implementation and do not consider im-plementations which modify the representation of the state, implementation of the

modi�ers is rather similar to implementation of the observers | requiring only thecalculation of the value of each node in the new representation from those in the oldrepresentation. Since all new nodes and almost all old nodes have to be accessed byimplementations of the modi�ers, an e�cient representation would usually have asmall number of nodes. (We are also less justi�ed in ignoring the cost of calculatingeach value.)However, allowing the reuse of parts of the representation of a state in therepresentation of its successor states makes it possible to signi�cantly increase thee�ciency of implementations, if we can avoid accessing most of the nodes in therepresentation being modi�ed. Since a node may only be modi�ed if it is accessed,this means that in an e�cient representation, most of the nodes in a state x musthave the same contents (and links) as nodes in the representation of its successors �x(for � 2M). For example, �gure 7 shows the e�ect of the modi�er DEQ on the datapart of the representation in �gure 6 and the way in which the nodes in the originalrepresentation are reused for the representation of the state after applying DEQ.
b�� -� c -� d ��?front ?rear

c�� -� d ��
f 0 , 1 , 2 gf 0 , 1 g�����
 �����
Figure 7In this example, the choice of how to reuse nodes is obvious; in more complexexamples, it is less so | often the data part must be redesigned to ensure thatfeatures of the state which change independently of each other are stored separately.The above discussion deals with what appear to be the major issues in the designof the data part of an e�cient representation:� the data part should be adequate;� it should be possible to calculate the result of an observation by examining afew nodes and so the representation should store features of the state closelyrelated to what can be observed;� it should be possible to modify a representation by accessing only a fewnodes, and so the data parts of adjacent states (x and �x) should be verysimilar (i.e. there should be a one-to-one function cx;�: dom(data-rep x) !dom(data-rep�x) which is de�ned for most of its domain and for which cor-responding nodes have the same contents.� there should be a description of how to calculate the successor of each rep-resentation which respects the correspondence between node labels (i.e. ifn 2 dom(cx;�), the node labelled n in the representation of x is reused as thenode labelled cx;� n in the representation of � x.)We shall now consider the entire design process.

3.5 SummaryTo summarise our analysis, when designing a data structure one should �rst choosethe data part and then design a structure to manipulate and access it.The data part of the representation should initially be adequate; it should storethe information required by the implementation of the observers in a small numberof nodes; and it should have similar representations for adjacent states.Starting with an adequate data part, a description of how to calculate the resultof applying an observation and of how to calculate the data part of a state from itspredecessor, the structural part is gradually added. As structure is designed andadded, the data part may be simpli�ed by removing nodes or labels which are nolonger required for adequacy.Then, observation points are added to the representation of each state so thatthey provide access to the cells from which the result of observing that state iscalculated. Similarily, update points are added, thus allowing the values of newcells to be calculated and various changes to be made. After fusing entry pointsand eliminating those entry points which we wish to approximate, links are added inthe representation of each state along the routes of the entry points. Links are fusedif possible and desirable and, if necessary, the cycle repeats from the introductionof the entry points.4 ConclusionsWe have presented our ideas on how data structures can be designed. At presentwe recognise the following limitations in our view of the design process:1. Although we have an abstract machine (not reported here) which may be usedto describe an implementation, further work is required to determine underwhich circumstances the \optimisations" described here actually do result ina more e�cient implementation.2. We have no clear idea of how a good data part may be designed. This is oneof our major interests at the present moment.3. Throughout our discussion, we have considered how to implement an obser-vation of a particular state, how to change the representation of a particularstate into one of its successors, etc. Generating an implementation, requiresthat we generalise the implementations of each observer and of each modi�erinto implementations which work for any state. Our approach currently doesnot consider such generalisation.4. As yet we are unable to cope adequately with problems requiring some formof search/lookup for their solution. However, since our problem seems onlyto be the large (usually in�nite) number of entry points introduced, it seemsplausible that a few techniques for reducing the number of entry points (suchas use of hash tables, search trees, etc.) would largely overcome this limitation.5. We cannot handle speci�cations permitting a range of possible values for agiven observation. (For example, a common observer for sets is a choiceoperation which returns one of the elements of the set it is applied to.) This

problem can be avoided by strengthening the speci�cation until there is onlya single value for every observation. However, this solution is not entirelysatisfactory since the information required to make a good (i.e. e�ciencyinducing) choice of how to strengthen the implementation is not availableuntil implementation has begun.5 AcknowledgementsThis work was strongly motivated by and based on work reported in [2] and [3]. Itwas �nancially supported by an SERC Research Studentship.References[1] Mary E. d'Imperio, Data Structures and their Representation in Storage, inHalpern, Shaw (editors), Annual Review in Automatic Programming, Volume5, pp. 1{76, International Tracts in Computer Science and Technology andTheir Applications, Pergamon Press Ltd., 1969.[2] Mu�y H. Thomas, Implementing Algebraically Speci�ed Abstract Data Typesin an Imperative Programming Language, in TAPSOFT '87, Pisa, Italy, Lec-ture Notes in Computer Science, Volume 250, Springer Verlag, 1987.[3] Mu�y H. Thomas, The Imperative Implementation of Algebraic Data Types,Research Report CSC/88/R4, Computing Science Department, University ofGlasgow, 1987 (also, Ph.D. thesis, University of St. Andrews, 1987.)[4] Richard J. Bird and Philip Wadler, An introduction to Functional Program-ming, Prentice-Hall, 1988.[5] Aho, Hopcroft, Ullman, The Design and Analysis of Computer Algorithms,Addison Wesley, 1974.[6] Donald Erwin Knuth, The Art Of Computer Programming, Volume 3, Sortingand Searching, Addison Wesley, 1973.

