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Abstract. Despite 20+ years of research on processor verification, it
remains hard to use formal verification techniques in commercial pro-
cessor development. There are two significant factors: scaling issues and
return on investment. The scaling issues include the size of modern pro-
cessor specifications, the size/complexity of processor designs, the size
of design/verification teams and the (non)availability of enough formal
verification experts. The return on investment issues include the need to
start catching bugs early in development, the need to continue catching
bugs throughout development, and the need to be able to reuse verifica-
tion IP, tools and techniques across a wide range of design styles.
This paper describes how ARM has overcome these issues in our Instruc-
tion Set Architecture Formal Verification framework “ISA-Formal.” This
is an end-to-end framework to detect bugs in the datapath, pipeline con-
trol and forwarding/stall logic of processors. A key part of making the
approach scale is use of a mechanical translation of ARM’s Architecture
Reference Manuals to Verilog allowing the use of commercial model-
checkers. ISA-Formal has proven especially effective at finding micro-
architecture specific bugs involving complex sequences of instructions.
An essential feature of our work is that it is able to scale all the way from
simple 3-stage microcontrollers, through superscalar in-order processors
up to out-of-order processors. We have applied this method to 8 different
ARM processors spanning all stages of development up to release. In all
processors, this has found bugs that would have been hard for conven-
tional simulation-based verification to find and ISA-Formal is now a key
part of ARM’s formal verification strategy.
To the best of our knowledge, this is the most broadly applicable formal
verification technique for verifying processor pipeline control in main-
stream commercial use.

1 Introduction

Modern microprocessor designs apply many optimizations to improve perfor-
mance: pipelining, forwarding, issuing multiple instructions per cycle, multiple
independent pipelines, out-of-order instruction completion, out-of-order instruc-
tion issue, etc. All of these optimizations are supposed to be invisible to the
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programmer in a uniprocessor context: the overall effect should be the same as
executing instructions one at a time in program order. But each of these opti-
mizations introduces corner cases that potentially change the behaviour and the
different optimizations interact with each other in complex ways.

For example, in a pre-release version of one of ARM’s dual-issue processors,
there was a defect in the inter-pipeline forwarding control logic that resulted in
an instruction reading its input value from the wrong place if the instruction was
preceded by a conditional instruction whose condition did not hold (and whose
results should therefore not be used as inputs). The shortest instruction sequence
which could demonstrate this defect was 5 instructions long. The particular set
of instructions that could trigger the defect was fairly narrow because it was
necessary that the instructions used particular parts of the pipeline, and the
instruction sequence had to be aligned such that the first of these instructions
executed in pipeline 0.

For traditional simulation-based verification to detect this defect you would
need a detailed understanding of the micro-architecture of that particular pro-
cessor, of the corner cases caused by the forwarding paths and of the kinds of
errors one is likely to make in implementing forwarding control logic. Creating
such tests is not only hard and unreliable, but it is also expensive because the
tests would be specific to the particular micro-architectural choices in a processor
and different tests must be created for each processor.

This paper describes the “ISA-Formal” verification technique that we have
developed at ARM for verifying that processors correctly implement the Instruc-
tion Set Architecture (ISA) part of the architecture specification. Our method
uses bounded model checking to explore different sequences of instructions and
was able to detect the above defect prior to release of the RTL to manufacturers.

The effectiveness of ISA-Formal is important to its adoption within ARM
but it is not the most important requirement we had to satisfy in order to make
formal verification a useful part of ARM’s processor development flow. Before
ISA-Formal could be deployed widely within ARM, we had make it work within
the constraints of commercial processor development:

(1) Processor development takes a long time (2 years or more) and it is
important to be able to be able to detect bugs at all stages of processor devel-
opment. We have applied ISA-Formal all the way from incomplete designs that
still contain bugs through to complete, heavily tested designs.

(2) Verifying a processor takes longer than design: the long tail of processor
development is developing new tests for the processor and fixing any bugs. It
is important that useful results can be obtained even in the early stages of
verification — before the complete test infrastructure has been developed. ISA-
Formal is able to find bugs involving instructions for which we do not have a
specification; all we need is a specification of any instruction whose result could
be affected by the bug.

(3) Verification teams work in parallel with design teams so it is important
that verification teams are able to continue searching for new bugs even when
there are multiple outstanding bugs waiting to be fixed. Some bugs can take



months to be fixed if they are not critical to immediate project milestones. ISA-
Formal is able to work round known bugs in the processor.

(4) Any verification technique requires significant investment so reusability
not only of the technique but also of the infrastructure is critical. We are able
to reuse the tools across ARM v8-A/R (Application/Real-time) class and across
v8-M (Microcontroller) class processors. The only part that needs to be cus-
tomized for each processor is the Verilog abstraction function that extracts the
effective architectural state from the micro-architectural state of a processor.
This portability has been a great benefit while developing the technique because
it allowed several processor teams to pool resources: one team worked on how to
verify floating point instructions while another worked on branches and another
worked on load-store instructions.

(5) Modern processor architectures and modern processors are large: the
ARM v8-A ISA specification is over 2500 pages long, the v7-M ISA specification
is over 600 pages long (almost half the length of the entire specification). It
is important that verification techniques scale both in terms of human effort
and computing resources. We have written a tool to automatically translate
the source of the ARM Architecture Specifications to Verilog; and we split the
verification task into thousands of small properties allowing effective use of large
compute clusters.

We demonstrated these properties in three small-scale trials on different pro-
cessors and have since refined and applied the technique on five further ARM
processors: checking almost the complete instruction set architecture of these
processors ranging from simple 3-stage microcontrollers up to sophisticated 64-
bit out-of-order processors. ISA-Formal is now a key part of ARM’s formal ver-
ification strategy.

We characterise our approach as “end-to-end verification” because it focusses
on directly verifying the path from instruction decode through to instruction
retire against the architectural specification in contrast to hierarchical or block-
level verification which focusses on verifying individual blocks against micro-
architectural specifications and then verifying that the composition of those
blocks meets the overall specification.

ISA-Formal is strongly based on techniques developed in the academic com-
munity; our contribution is a description of the techniques needed to make it scale
and of the challenges and solutions in creating a portable approach which can be
applied in a commercial setting to a wide range of processor micro-architectures.

The remainder of this paper is structured as follows: Sect. 2 discusses related
work; Sect. 3 illustrates the basic idea, demonstrating how ISA-Formal can be
applied manually, to a single instruction and discusses the kinds of bugs it was
able to discover in real processors; Sect. 4 describes how we scaled this idea
up to handle full ISA specifications; Sect. 5 describes adaptations to handle a
variety of different micro-architectural features; Sect. 6 reports on the results of
applying this method to multiple processors; Sect. 7 concludes.



2 Related Work

Our work builds heavily on the pioneering work from the ’90’s such as Burch-
Dill’s automatic verification based on flushing refinements [5] and Srinivasan’s
verification based on completion refinements [19]. These and many other works
used different notions of correctness of which Aagard et al. [2,1] give a useful
taxonomy and establish conditions under which different notions of correctness
are equivalent.

Our approach focusses on verifying RTL (Verilog) in contrast to work which
verifies a high-level model of the microarchitecture design against a specifica-
tion. For example, Lahiri et al. [14] verified the microarchitecture of the M*-core
processor core (an early RISC-style architecture) and [13] verified the microar-
chitecture for an out-of-order processor through a series of successive refinements
but neither verified against the RTL of an actual processor. In our experience,
most errors are introduced while translating the microarchitecture design into
RTL and during subsequent optimisation so verifying before RTL misses a lot
of bugs. The challenge of verifying actual RTL is that it makes it hard to use
abstraction techniques such as using uninterpreted functions because the actual
RTL of an efficient processor tends not to have convenient blocks which match
directly with parts of the original specification.

Many approaches to verifying pipeline control logic have used theorem prov-
ing techniques to tackle the difficult problems of handling pipeline forwarding
and hazards in in-order processors [21,12] and, later, for out-of-order proces-
sors [8,16,7,9]. Theorem proving techniques are powerful and tend to suffer less
machine-scaling issues than more automated techniques but their reliance on ver-
ification experts leads to severe human-scaling issues: it is hard to hire enough
experts. We prefer to ride Moore’s law and use more CPU-intensive but more
automatable approaches.

There has been considerable commercial interest recently in formal verifi-
cation of floating point units such as Kaivola et al. [10], KiranKumar [11] and
Slobodova et. al [18]. This is impressive and important work but essentially
orthogonal to our own: while it tackles the scaling issues that occur when ver-
ifying commercial processors, it focusses on individual blocks processing a sin-
gle instruction with relatively simple input-output signals while our approach
focusses on the entire pipeline and especially the control logic to handle interac-
tions between instructions. We describe how we deal with verification of pipelines
containing floating point units in Sect. 5.1.

3 Illustration: Hand-written properties

The basic approach to verification that we use in ISA-Formal is based on the
above prior work. We start with the processor in a simple, well-defined state
uArch0 with no instructions in the pipeline. We then execute for a number of
cycles where each cycle may issue an instruction. This serves to put the processor
into a more complex state where hazards, forwarding, etc. can occur. And finally,



we execute an instruction In and test whether the instruction executes correctly.
This is done by applying an abstraction function abs which extracts the archi-
tectural state of the processor immediately before In executes and immediately
after In executes. We do not flush the pipe before or after In.

uArch0 uArch1 uArchn−1 uArchn

Archn−1 Archn

I1 In

abs abs

In

A key part of making this scalable is that, instead of allowing the formal
verification tool to choose any instruction for In, we enumerate all the instruc-
tion classes supported by the architecture and perform a separate check for each
instruction class. Proving these simpler results is helpful early in processor de-
velopment by making it easy to focus on checking the currently implemented
instructions. Later in development, the pattern of failing instructions is a useful
guide in localizing the fault: if all branch instructions are failing, there is no
need to worry about bugs in the ALU. And as the size of the verification task
scales up, splitting the verification task into many small properties lets us make
more effective use of our verification cluster which is optimized for running many
independent processes across hundreds of machines.

To make this more concrete, consider the task of checking an addition in-
struction in the classic 5-stage pipeline illustrated in Fig. 1. This consists of 5
pipeline stages responsible for instruction fetch (IF), decode (ID), execute (EX),
memory access (MEM) and writeback of results (WB). Values are read from the
register file at the ID/EX boundary and results are written to the register file
at the MEM/WB boundary. Forwarding paths (aka bypass logic) are used to re-
duce the number of stalls by allowing the result of one instruction to be used as
an input to the ALU if required by the next instruction. Conventionally, most of
the control signals from decode and those that control the pipeline and forward-
ing paths are not shown — although that is where many of the most difficult
bugs lie. We use this simple microarchitecture to explain the technique, Sect. 5
discusses how we adapt the approach to handle more realistic microarchitectures
including dual issue, out-of-order retire and register renaming.

IF ID EX MEM WB

D-Mem

Rd Wr

O
p
c
o
d
e

Decode

Fig. 1. A 5-stage processor pipeline, with forwarding paths, omitting I-Fetch



Our first challenge is to implement the abstraction function abs which is
responsible for converting the micro-architectural state of the processor into
an architectural state. To verify an addition instruction, the function abs must
extract the current values of the integer registers.

Many simple processors commit their results in order in a single pipeline
stage. This means that, at the beginning of the cycle where the add instruction
commits, the micro-architectural register file should contain the same values as
the architectural register file before the add executes and, at the end of the
cycle, the micro-architectural register file should contain the same values as the
architectural register file after the add executes. We can therefore obtain the
state before by reading the state at the end of the writeback stage and the state
after by reading from the end of the Mem stage.

The other part of the input state of the processor that we require is the
opcode of the current instruction. The opcode is normally discarded shortly af-
ter instruction decode and is not available at the point where an instruction
commits. We therefore need to implement a “pipeline follower” which copies
the opcode from one stage to the next and implements the same pipeline stal-
l/flush logic as the datapath. This is similar to the introduction of “ghost state”
in Lahiri et al. [13]. The followers and abstraction logic for the pre/post-states
are illustrated in Fig. 2
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Decode

abs

prepost

abs

Fig. 2. A 5-stage processor pipeline with state abstraction and follower

Of course, modern ARM processors are considerably more challenging than
a simple 5-stage pipeline: Sect. 5 describes the variations on the above approach
required to apply ISA-Formal in practice.

Our second challenge is to create a specification of the addition instruction.
For any individual instruction, the specification can often be written as a short
piece of purely combinational logic. For example, ARM’s 16-bit encoding of the
instruction “ADD Rd, Rn, Rm” has opcode 0b0001100 | Rm<<6 | Rn <<
3 | Rd and adds the contents of registers Rn and Rm and writes the result to
register Rd.



This can be implemented by the following System-Verilog.

assign ADD_retiring = (pre.opcode & 16’b1111_1110_0000_0000)
== 16’b0001_1000_0000_0000;

assign ADD_result = pre.R[pre.opcode[8:6]]
+ pre.R[pre.opcode[5:3]];

assign ADD_Rd = pre.opcode[2:0];

To complete the example, we add assertions that the abstracted result matches
the result of the specification when retiring an add instruction.

assert property (@(posedge clk) disable iff (˜reset_n)
ADD_retiring |-> (ADD_result == post.R[ADD_Rd]));

The above specification is remarkably simple so it is worth examining what
kinds of defect this specification could catch.

Decode Errors Most obviously, this specification would detect any error in
instruction decoding. But many decode errors are also caught by other verifi-
cation methods such as directed or random testing so, at first sight, this does
not seem especially useful. However, the instruction decoder is responsible not
just for determining how to execute the current instruction but also for setting
signals that determine whether it is safe to apply optimizations involving later
instructions. A property like the above found a decoder bug involving one such
signal that determined whether two adjacent instructions could be fused into a
single micro-op: the signal was being incorrectly set for one instruction. This de-
fect had been missed despite extensive testing of the processor: there were tests
to ensure that the optimization did happen but testing is ill-suited to checking
that it never happens in any other circumstance.

Datapath Errors An error in a datapath would be caught by this kind
of check although, in practice, many errors of this kind are caught by other
verification methods already in use.

Interactions between instructions Most usefully, and unlike methods
based on Burch-Dill flushing, this specification will detect errors caused by in-
teractions between instructions such as errors in the forwarding logic that can
supply inputs to this instruction. The example given in the introduction of a
sequence of five instructions which triggered an error in the forwarding control
logic was detected by a hand-written property like the above. Bugs like this are
significantly more important to catch because the forwarding paths vary from
one processor to another, the control logic is difficult to get right and the errors
are hard to catch by conventional tests.

We currently use bounded model checking which verifies that a sequence of
n instructions does not go wrong but to show that any sequence does not go
wrong, we would need to find invariants about the processor and use those to
get unbounded proofs. Going further, in order to complete ISA verification, we
would need to verify that instructions are not lost, duplicated or reordered (we
have done this for some processors) and, to complete verification of the core,
we would need to verify exception taking mechanisms, the instruction fetch unit
and the memory management unit.



4 Generating Verification IP with Architecture Explorer

The main challenge in applying the above approach to a full processor is one
of scaling. The ARM v8-M architecture has 384 instruction encodings and the
instruction set part of the architecture specification is over 600 pages long [4];
and the ARM v8-A/R architecture has 1280 instruction encodings and is over
2500 pages long [3]. Some of the encodings explicitly disallow using certain reg-
isters as sources or destinations to the instructions, many of the instructions
are conditional and there are a variety of other complications and corner cases.
In addition, changes are regularily added to the architecture specification. All
these reasons make the prospect of writing, testing and maintaining a Verilog
specification like that shown above unattractive.

Over the last 5 years we have developed tools which transform ARM’s official
Architecture Reference Manuals into executable specifications of the v8-A/R and
v8-M architectures [17]. A key part of making this specification useful was to test
it thoroughly before using the specification to verify anything else. In many ways,
this is like Fox and Myreen’s testing of their ARM ISA specification [6] except
that we were able to use ARM’s internal architecture conformance testsuite
(that is normally used to test processors) to test the specifications with billions
of instructions that probe each instruction’s corner cases.

The core of this specification is ARM’s Architecture Specification Language
(ASL) that grew out of the pseudocode used in earlier versions of the architecture
reference manuals. At a high level, ASL is an indentation-sensitive, imperative,
strongly typed, first-order language with type inference, exceptions, enumera-
tions, arrays, records, and no pointers. All integers in ASL are unbounded and
there is direct support for N-bit bitstrings and functions are allowed to be poly-
morphic in the width of a bitstring. For example, memory read returns a value
of type bits(8*size) where size is constrained to be 1, 2, 4 or 8.

The task of scaling the ISA-Formal approach up to handle the full instruction
sets with all their complexities is therefore one of translating the rich, expressive
ASL language to combinational System-Verilog using the synthesizable subset
of Verilog that is accepted by commercial Verilog model checkers. The chal-
lenge in doing this is that synthesizable Verilog is intended to describe hardware
and imposes several limitations upon us; (1) Verilog integers are finite and the
bitwidth is a part of the type; (2) Combinational Verilog is normally written in
a declarative style with no assignments or control flow and few function calls;
(3) Synthesizable Verilog does not support unbounded for-loops or while-loops;
(4) Synthesizable Verilog does not support exceptions; (5) The width of bit-
strings in Verilog must always be a manifest constant and there is no form of
polymorphism over bitwidths of functions.

We were able to overcome the first four issues using relatively conventional
compiler techniques. (1) We use a global flow-insensitive value range analysis to
compute the required width of most integer variables and use a large, but safe
bound for any integers with unknown range. (2) Verilog includes a rarely used
procedural subset which most of the language can be translated into. (3) User-
supplied bounds on loops can be used to unroll all loops. (4) A whole-program



transformation which adds additional flags and control flow to make exception
and return-related control flow explicit.

The most challenging problem was dealing with bitstring polymorphism. Vir-
tually all polymorphism was caused by instructions which could operate on data
of different widths such as 8, 16, 32 or 64-bit load instructions. This obser-
vation enabled us to eliminate almost all polymorphism by automatically spe-
cializing such instruction encodings to create a separate instruction for each
data width and then to use alternate passes of constant propagatation and a
“monomorphization” pass which identifies calls to polymorphic functions where
the bitwidth is a manifest constant and replaces the call with a call to a monomor-
phic instance of the polymorphic function. The remaining polymorphism is han-
dled by a set of ad-hoc transforms in the Verilog backend.

5 Applying ISA-Formal to CPUs

In practice, few processors are as simple as the 5-stage pipeline sketched in
Fig. 1 and we have had to develop a number of techniques in writing abstraction
functions to deal with complex functional units, out-of-order retire, dual issue
pipelines, instruction fusion, and register renaming.

5.1 Complex Functional Units

For the most part, our end-to-end approach to verification works: commercial
model checkers are able to handle the complexity of most components without
assistance. However, for complex functional units such as floating point and the
memory system we choose to use other more scalable verification techniques such
as the end-to-end memory-system verification technique described by Stewart et
al. [20]. This modular approach lets ISA-Formal verification focus on control logic
and forwarding paths that controls, feeds and is fed by these complex units.

In order to make ISA-Formal modular, we partition the specification on func-
tion call boundaries into different parts “Instruction Set Architecture (ISA),”
“Floating Point,” “Exception,” “Address Translation,” etc. and only generate
Verilog for the “ISA” part. Any functions on the interfaces to other partitions
are written by hand and many are just a few lines long: returning some compo-
nent of the result of the pre-state or changing some component of the post-state.

On the interfaces, we adopt a variety of approaches to filling the resulting
gaps in the generated Verilog using interface properties, subset behaviour check-
ing and abstract functions. In general, these approaches will prevent us from
detecting bugs in some parts of the processor using ISA-Formal. We tackle this
by tracking which parts of the processor are not being checked by ISA-Formal
and ensuring that an alternative verification technique is used on those parts.

Interface properties For some components such as the memory system, we
were already creating interface specifications which were sufficiently strong that
we could use the interface specification instead of the memory system. This only



required us to convert the architectural view of the memory system to the micro-
architectural view by translating requests/responses between representations.

Subset behaviour checking For components such as floating point units, a
specification of the full behaviour would still be too complex to use in verification
but is quite simple if we restrict ourselves to a subset of the full behaviour. For
example, if we restrict the inputs to ±{0, 1,∞,S-NaN,Q-NaN} then it is easy
to create specifications of all the FP instructions for this subset and perform
some verification. Obviously, this would not be sufficient to detect errors in the
floating point unit itself, but this subset gives enough different values that errors
in the control and forwarding logic can be detected.

We could use SystemVerilog assumptions to restrict inputs to the chosen set
of inputs, but this would restrict all of the checks that ISA-Formal performs on
instructions: whether the instruction sets condition flags, raises an exception,
accesses memory, which registers are written, etc. Instead, we add an additional
signal indicating whether the inputs are in the supported subset and use that
signal only to restrict checks of the values written to floating point registers.

Abstract Functions The final option is to use the processor as an oracle.
That is, we add logic to track the inputs and outputs from some functional unit
and then use the output value if the inputs of a function in the architectural
specification match the actual inputs of a functional unit in the processor. Since
we are choosing to trust the behaviour of that unit, this cannot detect errors in
the unit but it can detect errors in the surrounding control and forwarding logic.

5.2 Out of order completion

In an in-order core, all instructions retire strictly in-order, but some slower in-
structions may complete out of order. Retiring a load (say) after the memory
protection check but before the data returns from the memory system allows
independent instructions to continue without waiting for the access to complete.
Such optimizations are important to verify because they introduce difficult cor-
ner cases in the design such as ensuring that the result of the load is written
back even if the processor takes an exception.

The difficulty in verifying out-of-order completing instructions is that it is
hard to construct the post-state: by the time that the load instruction completes,
some of the instructions issued after load will also have completed. This is further
complicated because some load instructions may be split into multiple micro-ops
which complete independently.

Our solution to this is to take a snapshot of the pre-state when the load
instruction retires. As each micro-op for the instruction under test completes, the
snapshot is updated with the change. Finally, when the last micro-op completes,
the final post-state is available and the instruction can be checked against the
architecture specification.



5.3 Dual issue pipelines

Dual issue pipelines decode and execute two consecutive instructions in parallel.
To handle dual issue pipelines, we add a further abstraction function to extract
the intermediate state between execution of the two instructions. Our initial
approach to checking these was to create two copies of the combinational logic
implementing the specification: one copy for each pipeline. This worked but
consumed a lot of memory and would scale badly for 3 or more-issue processors
so, instead, we use a single copy of the specification and insert multiplexors to
select which pre/post state is used with the specification.

The most serious problem encountered occurs if the second instruction can
suppress part of the behaviour of the first instruction. For example, if both
instructions modify the carry flag, then the final value written will be the result of
the second instruction. In this case, the carry flag value from the first instruction
may not be available at the writeback stage and we need to identify the correct
signal to use and add a pipeline follower to propagate the value down to the
point of serialization. Any error in choice of signal is detected when that signal
is used as part of the pre-state of the second instruction.

5.4 Instruction Fusion

A high-performance processor might wish to fuse commonly occuring pairs of
consecutive instructions into a single instruction. For example Malik et al. [15]
describes a processor that detects sequences of dependent ALU instructions such
as

SUB R4, R1, R2 ; R4 := R1 - R2
ADD R4, R4, R3 ; R4 := R4 + R3

and fuses them into a single macro-operation that reads three inputs from the
register file and performs two add/subtract operations.

Optimizations of this kind raise a potential problem in sequences where the
results of the first instruction are overwritten by the second instruction because
the processor may not calculate the post-state of the first instruction or the
pre-state of the second instruction.

Our solution is to add additional verification logic to calculate the missing
intermediate state. The correctness of this logic is verified when checking that
all uses of the SUB instruction (i.e., the first instruction of the pair) is correct
and that justifies use of the result when checking that the SUB/ADD fused pair
(i.e., the first/second instruction pair) gives the correct overall result.

5.5 Register Renaming

Processors with out-of-order instruction issue differ significantly from processors
with in-order issue because they speculatively execute instructions past branch
instructions. To allow them to recover from mis-speculation, they use a register
rename table that maps architectural registers such as “X0” to one of a large



pool of physical registers. As instructions are decoded, source registers are “re-
named” using this table; free physical registers are allocated and the rename
table is updated with mappings from destination register names to these physi-
cal registers. Instructions typically execute as soon as their input dependencies
are satisfied but, to preserve the illusion that instructions execute in program
order, a reorder buffer (ROB) only commits instructions in program order.

Despite the added complexity of speculative execution, register renaming
and reorder buffers, it is actually simpler to apply ISA-Formal to out-of-order
processors because they have a single clearly identified point of serialization
implemented in the reorder buffer. In contrast, in-order processors have a variety
of different mechanisms to support a limited degree of out-of-order execution
such as varying pipeline length or supporting out-of-order completion of slow
instructions and these different mechanisms are scattered across the processor.

5.6 Debugging Abstraction Functions

From the above, it should be apparent that creating the abstraction code remains
a difficult task and involves a lot of work with the CPU designers to get right.
While debugging these abstraction functions, we have found that it is useful
to start by using hand-written properties like those described in Sect. 3 for
instructions that touch the major parts of the processor. For example, a data-
processing instruction, a load, a store, a floating point move, etc.

It is significantly easier to debug the abstraction function using hand-written
specifications than using a mechanical translation from the specification. Once
we have debugged the abstraction functions, we switch to using the machine-
generated specifications exclusively, and rarely look at the generated code.

5.7 Handling Known Problems

One of the major difficulties we experienced before developing ISA-Formal was
that formal verification tools would report variations on the same defect over
and over again. This was a problem early in development when we might know
that part of the processor was missing or incomplete; and it is a problem at any
stage that once the bug report has been filed, the verification team wants to
focus on finding other problems until the bug has been dealt with.

A critical technique for handling known problems is to maintain a list of
assumptions corresponding to each individual bug or feature. As each bug is
fixed, we remove the corresponding assumption and confirm that the bug has
been fixed. Using assumptions is a simple technique but it greatly increases our
ability to use formal verification to detect errors early in development and it
very effectively decouples processor design from verification allowing the tasks
to proceed in parallel.



6 Results

This section describes the results of applying ISA-Formal in three small-scale
trials and five full-scale uses. These eight trials and uses cover the full lifetime of
ARM processor developments; they cover both application processor targetted
at mobile phones, etc. and microcontrollers targetted at embedded uses; and
they cover micro-architectures ranging from 3-stage, in-order pipelines through
dual-issue, in-order pipelines to out-of-order pipelines.

6.1 ARM’s Development Phases

ARM’s development process involves four stages of roughly equal length: Develop
and Test (D&T), Alpha, Beta and Access. The goal of each stage is to create
a basic pipeline design in D&T; make it feature complete by the end of Alpha;
improve power, performance and area through Beta; and to improve confidence
in the design through the access period where the design is made available to
the lead partners for that processor for evaluation and feedback. Testing steadily
increases throughout this process and each stage applies roughly an order of
magnitude more testing than the previous stage.

6.2 Small-scale Trials

We carried out three small-scale trials on processors that were already in the
access phase to demonstrate the ability of ISA-Formal to detect defects that
were hard to detect by other means. These trials consisted of developing hand-
written properties like those described in Sect. 3 and demonstrated the ability
to detect defects that had been found by other means as well as new defects.

The defect described in the introduction is an example of a bug we detected
during this trial process. The trigger sequence of the defect is conditional ex-
ecution of instructions executing in two pipeline stages with a combination of
taken and not-taken instructions. In a 2-pipeline design, the size of the smallest
trigger sequence is 5 instructions: one to set up the condition, two (one per pipe)
to generate values that might be forwarded, and two (one per pipe) to consume
forwarded values. (There are several variations on that basic pattern.) Using tra-
ditional simulation-based verification, patterns like this would have to be tested
on all combinations of instructions that have forwarding paths between them in
that particular micro-architecture and each processor will have a different set
of forwarding paths. There are many, many sequences of instructions like this
to be tested so defects of this form are typically only found during soak-testing
during the Access phase. Using ISA-Formal, we created hand-written properties
for one or two instructions corresponding to each major unit in the datapath
(the ALU, shifter, multiplier, etc.), we created abstraction functions for each
of the two pipelines, and, since we left the opcode received from the fetch unit
unconstrained, the commercial bounded-model-checker explored sequences of in-
structions up to some bound. We ran about a dozen properties through the model
checker and after two minutes proof time detected the failing trigger sequence.
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Fig. 4. Defect Detection by Time

The same experience was repeated on all three processors: bugs were found
with relatively little effort with the bulk of the work being done by junior en-
gineers supervised by formal experts and with input from the microarchitects.
The consistent combination of low human effort and low machine effort was an
important part of demonstrating that ISA-Formal could detect difficult defects
that, at best, would have been caught only during the Access phase.

6.3 Production Usage

Based on the success of the small-scale trials, ARM decided to adopt ISA-Formal
as part of the formal verification strategy on five processors that were in earlier
stages in their development: three in D&T, one in Alpha and one in Access. This
work used the tool described in Sect. 4 to generate Verilog for all instructions
directly from ARM’s official Architecture Reference Manuals allowing engineers
to focus on developing abstraction functions and testing the processor.

Defects have been found in all five processors with the distribution roughly
in proportion to the effort invested in that processor. The small-scale trials
had demonstrated that ISA-Formal can detect difficult to detect defects late in
processor development; the production usage demonstrated that ISA-Formal is
effective at detecting defects in earlier phases of development. Fig. 3 and Fig. 4
show the distribution of confirmed, distinct defects detected using ISA-Formal
by phase and by time. Fig. 3 shows that ISA-Formal is capable of catching many
defects early in development (overcoming the problem of being able to find many
distinct defects in parallel with development) and that it is capable of finding
defects late in development even after extensive testing by other methods. Fig. 4
shows that ISA-Formal is able to start detecting defects in just a few weeks work
and continues to find bugs as processors are developed.

We also found that ISA-Formal was able to detect issues affecting all areas of
the instruction set: FP/SIMD, Memory, Branches, Integer, Exceptions and Sys-
tem instructions (e.g., memory fence instructions) Table 5 shows the distribution
of bugs found by ISA-Formal by the area of the processor affected (combining



FP/SIMD 25%
Memory 21%
Branch 21%
Integer 18%
Exception 8%
System 7%

Fig. 5. Defect Detection by Area

Processor Lines of code

#1 2400
#2 2250
#3 4600
#4 1000
#5 2500

Fig. 6. Size of Verification Code

results for all processors). (The “Integer” category includes both integer datap-
ath instructions and basic pipeline control issues — it is often hard to separate
the two since integer instructions are so fundamental to a processor.)

It is encouraging to note that the two largest sources of detected bugs were
FP/SIMD instructions and memory instructions. As Sect. 5.1 explains, we do
not test the FPU or the memory subsystem but, despite this, we are still able
to test and find defects in the forwarding, pipeline control and register logic
connected to these units.

The effort of creating, testing and debugging the machine-readable specifi-
cation and a tool to translate it to Verilog is considerable but can be shared
across multiple processors and can be used for other purposes within the com-
pany (e.g., documentation, testing of architecture extensions, etc.). The primary
cost of implementing ISA-Formal on a new processor is the effort required to
implement the pipeline follower and abstraction function on each processor. As
a rough indication of the effort required, Table 6 shows the number of lines of
code required for each (anonymized) processor. Most processors need around
2,500 lines of support code: a fairly modest cost. The outliers are processor #4
which has not yet added a follower for floating point registers and processor #3
which is a more complex processor than the other four.

Beyond the bug numbers, we found that applying ISA-Formal early in the
development was capable of finding bugs that would not normally be caught
until much later. For example, very early in development of an out-of-order
processor, ISA-Formal found a bug that occurred when all the free registers in
the physical register pool were in use. This was found before the processor could
even execute load-store instructions so we would not normally be catching such
bugs that early.

7 Conclusions

Two barriers to widespread industry adoption of formal verification techniques
to check processors are scaling and return on investment issues. The end-to-end
approach to verification that we adopt tackles both issues: it allows machine-
generation of verification IP from the architecture specification, it allows engi-
neers to detect bugs that affect actual instruction sequences very early in de-
ployment, and it encourages creation of reusable tools, techniques and IP that
can be used across an unusually wide range of micro-architectural styles.



This paper describes the steps needed to turn the basic idea into a scal-
able, reusable technique: automation, dealing with a range of different micro-
architectural design techniques, and initial bringup issues. We have applied this
method to 8 different ARM processors spanning all stages of development up
to release. In all processors, this has found bugs that would have been hard for
conventional simulation-based methods to find and ISA-Formal is now a key part
of ARM’s formal verification strategy.

To the best of our knowledge, this is the most broadly applicable formal ver-
ification technique for verifying processor pipeline control in mainstream com-
mercial use.
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