
Implementing Fudgets withStandard Widget SetsAlastair Reid & Satnam Singh�Computing Science DepartmentUniversity of GlasgowJuly 6, 1998AbstractCarlsson and Hallgren [1] describe the implementation of a set of \functional widgets" (Fudgets):components for programming graphical user interfaces under the X window system using the non-strict functional programming language Haskell. We describe an alternative implementation basedon existing widget sets (currently Openlook and Motif). Our purpose is twofold: to show that theFudgets approach can be applied to existing widget sets; and to discuss problems experienced withFudgets during an industrial case study.1 IntroductionImperative language programmers enjoy relatively easy access to the graphics resources of workstations.The graphics hardware is manipulated by side-e�ecting procedure calls. Even if the library of graphicsprocedures is written in one imperative language (e.g `C'), programs written in another imperative languagecan usually make calls to foreign procedures. For example, Ada allows foreign procedures to be called bygiving a standard pragma. Ada compilers also allow Ada routines to by called by alien procedures.This report describes a library for building high quality user-interfaces for the purely functional lazy program-ming language Haskell. Graphics operations are produced by making alien procedure calls to C languageroutines. Communicating data between Haskell and C programs is not trivial because Haskell is a lazylanguage, has a garbage collector and uses a very di�erent representation for data (even for simple types likeintegers). We outline how to write Haskell programs that communicate data with C routines in an orderlyfashion using the Glasgow IO monad.The style of our interface is deliberately similar to the idiomatic style used in C for writing X Windowsgraphics software. This invites comparison with equivalent C programs and makes it easier to use theextensive body of X11 programming manuals.The structuring technique employed is based on the excellent Fudgets systems which uses higher-ordercombinators to glue together collections of user interface components. We describe some of the problemsthat arise from the static nature of the user interfaces generated by the Fudgets system. The Fudgets systemde�nes its own user interface components. We also show how the Fudgets approach can be modi�ed to useexisting user interface components. In particular, we have adapted Fudgets to use OpenLook and Motif forbuilding commercial quality and standardised user interfaces.�Email: fareid,satnamg@@dcs.glasgow.ac.uk 1

2 C Programmer's view of X widgetsThe target graphics system for our graphics library is the X Window System. This system runs on a largevariety of graphics workstations and a�ords us some degree of device independence.The X Window System is based around a server-client model. A client program (e.g. a drawing program)need not run on the machine that actually supports the display (a graphics workstation). Indeed, the clientmachine may have no display at all because the client and server are connected over a network. A clientprogram sends requests to the server to draw lines, points etc. The client program is also noti�ed aboutevents on the server's display.At the lowest level, the X Window System is a network protocol which provides a network transparentinterface for servers and clients. A C program language interface to this protocol is called Xlib. Thisprovides data types and procedures for performing very basic graphics operations. Xlib is usually the lowestlevel at which X11 applications are written. However, little support is provided for building user interfacescomprising of components like buttons, menus and scrollbars.The X Intrinsics Toolkit (Xt) is a collection of C types and procedures that describe the infrastructureneed to build graphical user interfaces. A mechanism is provided for creating user interface componentscalled widgets. Composite widgets may contain other widgets, allowing user interfaces to be constructed ina modular fashion as a widget tree. Widgets contain local state and are often implemented as �nite statemachines. The system we describe uses Xlib and Xt.Xt does not de�ne the behaviour or appearance of any particular widget. It only provides a `backplane' intowhich speci�c widget sets can be plugged into. Widget sets include Athena (distributed with Xt), OpenLookIntrinsic Toolkit (OLIT) and Motif. Though broadly similar, di�erent widget sets have di�erent resourcesand callbacks, so it is hard to modify a program written with one widget set to work with another widgetset.The Xt system for managing events like button clicks and menu selection is based around callbacks. Callbacksare similar to interrupts. A widget can have several kinds of events. For each widget and each kind of event,a callback routine can be speci�ed. (For example, a button would have a handler that is called whenever it isclicked. The callback routine is like a closure (it is basically a code-environment pair). Unlike an interrupt,the client program is not immediately interrupted and control transfered to the handler. Instead, this eventis queued. The top level of an Xt program contains a loop that waits for an event and then dispatches theevent by calling the appropriate callback. Thus, only one callback can occur at any time. The rest of theprogram is held up until the callback routine has �nished.The execution of Xt programs takes place in three distinct phases. First a connection to the X server iscreated. Once the connection is formed, a widget that corresponds to the root window of the server displayis returned. A client has as its top level a shell widget whose parent is the root window. The widgets of theclient program are realised and the client program enters its event loop.Each widget has associated with it a set of resources. Resources allow certain aspects about the behaviouror appearance of a widget to be determined either when it is initialised or during execution. Resources arealso useful for describing the positioning of widgets on the screen, colouration or internationalisation. BothX11 and Xt are equipped with sophisticated resource database managers.To illustrate the idiomatic C style for writing X11 software, we show below a (slightly simpli�ed) programthat changes the label text of a user interface component (taken from [1]):static int count = 0;static void setDisplay(Widget display, int i){ 2

char s[10];Arg wargs[1];sprintf(s, "%d", i);XtSetArg(wargs[0],XmNlabelString, s);XtSetValues(display, wargs, 1);}static void increment(Widget display){ count++;setDisplay(display, count);}void main(){ Widget top, row, button, counter;top = XtInitialise();row = XmCreateRowColumn("row", top);display = XmCreateLabel("display",row);button = XmCreatePushButton("button",row);setDisplay(display, count);XtAddCallback(button, increment, display);XtRealizeWidget();XtMainLoop();}The main procedure sets up a connection to the X11 server and creates a hierarchy of widgets. A callbackroutine is declared for the button, namely increment. Whenever the button is clicked, an event is registered.The XtMainLoop procedure processes this event by looking up and then executing the callback declared forthe button (i.e. increment). The increment routine simply updates a global counter variable and thenmakes the label display the decimal representation of this count as its label text. The label text is modi�edby updating the label resource (XmNlabelString) for the button widget.3 Accessing widgets from HaskellOur method of accessing the various X and widget libraries might be regarded as the most straightforwardapproach: for every library function that we want to access, we de�ne a Haskell function that calls thatfunction.Since the X-library functions have various side-e�ects (the most obvious of which is drawing an image onthe screen) it is necessary to ensure that the operations occur in the correct sequence. Previous approaches[8, 7] have guaranteed that actions occur in a strict sequence by sending a list of commands to an interpreter(written in an imperative language) which executes the commands in the order they are received.A more recent approach (supported by the Glasgow compiler) is to use a monad [4] to execute a series ofside-e�ecting actions in a strict sequence. Briey, the Glasgow IO monad provides:� A data type IO � which is the type of a (possibly side-e�ecting) action which, when executed, returnsa value of type �. 3

� A mechanism that allows arbitrary code written in an imperative language to be used as an action oftype IO �.� A function returnIO :: � ! IO � which, when executed returns its argument.� The combinator thenIO :: IO � -> (� -> IO �) -> IO � which combines two actions into oneaction. When executed, a1 `thenIO` a2 �rst executes a1 obtaining a result r and then executes theaction a2 r.We refer the reader to [4] for further details.Using the monadic approach, the main task of providing access to a set of imperative library functions is tode�ne a set of Haskell functions which call the corresponding imperative function. The major di�culty hereis in passing values from Haskell into the imperative functions and from imperative functions into Haskell.For simple values such as integers and strings, we were able to use the method of \unboxing" described byPeyton Jones and Launchbury [3]; to allow us to pass more complex values such as callbacks, we made asmall, general-purpose extension to the Glasgow compiler.1This basic approach can also be used to translate programs which use the X and widget libraries into Haskell.One further di�culty lies in the implementation of global variables. We use the following solution describedby Launchbury in [5].� The type Var � is an abstract data type of mutable variables of type �.� Given an initial value x say, executing the operation newVar x allocates a variable with initial valuex, and returns a reference to the variable.� Given a variable v::Var �, executing readVar v reads the current value of the variable v. Similarily,executing writeVar updates the value of the variable.For example, the program at the end of section 2 may be \translated" into the following Haskell program.> increment :: Label d => Var Int -> d -> IO ()> increment var display => readVar var `thenIO` \ count ->> writeVar var (count + 1) `thenIO` \ _ ->> setDisplay display (count + 1)>> setDisplay :: Label d => d -> Int -> IO ()> setDisplay display count => setLabel display (LabelString (show count))>> mainIO :: IO ()> mainIO => initialise "Xtest" `thenIO` \ top ->> createRowColumn "row" top `thenIO` \ row ->1Our initial implementation used a di�erent approach based on the fact that callbacks are only called by the event loop andit is possible to write your own eventloop for X. All we had to do was write callback routines which insert \callback events"into an event queue and replace the event loop with a Haskell loop which repeatedly calls the normal event-handling routines(which might cause callbacks to happen) and then dispatches any callbacks found in the event queue. Since the event loop iswritten in Haskell, there is no di�culty in calling callback routines written in Haskell.This approach could be used quite e�ectively (and e�ciently!) by those wishing to apply our overall approach under othercompilers. 4

> createLabel "label" row `thenIO` \ display ->> createButton "Press Me!" row `thenIO` \ button ->> newVar 0 `thenIO` \ countVar ->> setDisplay display 0 `thenIO` \ _ ->> addButtonCallback button> (increment countVar display) `thenIO` \ _ ->> realizeWidget top `thenIO` \ _ ->> mainloopThe above example illustrates how one might (naively) write GUI's in Haskell: �rst write the program inC and then translate it into Haskell. However, even if with practice we learn to avoid writing the programin C �rst, this kind of approach cannot be expected to lead to functional GUIs which are any simpler thantheir imperative counterparts. The next section discusses an approach which is dramatically simpler thanthe above.4 FudgetsIn [1] Carlsson and Hallgren argue that functional languages are better for implementing GUIs because theyo�er better abstraction facilities. In particular, their approach makes extensive use of higher-order functionsto capture common patterns of coding within GUI programs.The essence of Carlsson and Hallgren's approach is to treat each component of the user-interface as a \blackbox" (a Fudget) receiving input on a single \input pin" and sending output on a single \output pin."In Carlsson and Hallgren's implementation (see �gure 1a), each (primitive) fudget is responsible for (atmost) one window whose appearance it controls by sending X-protocol requests to the X-server and whichcommunicates with the fudget by sending X-events to the fudget.In our implementation (see �gure 1b), each (primitive) fudget is responsible for (at most) one widget whoseappearance and behaviour is controlled by calling resource setting routines (such as setLabel) and whichcommunicates with the fudget by executing callbacks.
αβ

Window

Fudget

Figure 1a. A Swedish Fudget
αβ

Widget

Fudget

Figure 1b. A Glasgow FudgetFrom the programmer's point of view, there is little di�erence between the two approaches.Some examples of simple fudgets are:� button :: String -> F � Click encapsulates the pushButton widget. The String is used as thelabel displayed on the button. When the user clicks on the button, a value Click2 is sent to the outputpin. (All input is ignored.)2In Haskell, the type Click is de�ned by data Click = Click.5

� label :: Text � => F � � encapsulates the label widget used for outputting (small) pieces of text.When a value is received on its input pin, its textual representation is displayed on the label widget.(No output is produced.)� textField :: F � String encapsulates the text �eld widget used for inputting (small) pieces oftext. When a value is received on its input pin, the current text entered by the user is sent to theoutput.It is also useful to create fudgets which are not associated with any widgets at all. Two such fudgets are:� ioToFudget :: (� ! IO �) ! (F � �) encapsulates an IO operation. When a value is receivedon its input pin, the IO operation is applied to that value (and executed) and the result is sent to theoutput pin.A typical use of this function is to write the input text to a �le or to perform a database transactionon receiving data on the input pin.� stateMachine :: ((s, �) ! (s,�)) ! s ! F � � encapsulates a piece of local state. When avalue is received on its input pin, the input and current state are used to calculate an output and asuccessor state and the output is sent to the output pin.The strength of Carlsson and Hallgren's approach lies in the provision of fudget combinators which allowsimple fudgets to be combined into more powerful combinators. For example fudget composition is achievedwith the combinator <==< :: F � ! F � � ! F � which connects the output of the second fudgetto the input of the �rst fudget (see �gure 2). Like function composition, fudget composition is associative.
αβγ

f2f1

Widget 1 Widget 2Figure 2. The fudget f1 <==< f2For example, the example discussed in the previous sections can be implemented as follows (see �gure 3):3> mainIO :: IO ()> mainIO = doFudget counter>> counter = label 0 <==<> stateMachine count 0 <==<> button "Press Me!"> where> count (c, Click) = let c' = c+1 in (c',c')3The function doFudget :: F � � ! IO () initialises the widgets contained within a fudget and enters the event loop.6

10 Press Me!

label button

count
n.c. n.c.Int Click

Figure 3. The Counter Fudget5 Implementation of FudgetsIt is straightforward to implement fudgets using the library discussed in section 3. Our implementation offudgets is based on the following observations:� When a fudget is created, we must call the creation function to create the corresponding widget. Allcreation functions have a parent parameter which is used by X-toolkit to create the widget hierarchy.Therefore a fudget must be a function taking (at least) a parent widget as a parameter.� Since widgets communicate with fudgets by executing callbacks, the simplest way for fudgets to com-municate with each other is by executing functions of the same type as callbacks. We call such functions\handlers."type Handler � = � ! IO ()That is, when a fudget is created, it is passed an output handler (which it will call when it wants tosend output) and returns an input handler (which is called when it is being sent input).For these reasons, the type F � � is de�ned by:type F � � = Widget ! Handler � ! IO (Handler �)The de�nition of the four fudgets and combinators used in the above example is straightforward:� The button fudget creates a pushbutton widget; adds a callback; and returns an input handler. Whenthe button is pressed, the callback applies the button's output handler to a Click (thus \sending" aClick to the button's output); the button's input handler ignores all input.> (button text) parent outputHandler => createButton text parent `thenIO` \ but ->> addButtonCallback but> (outputHandler Click) `thenIO` \ _ ->> returnIO inputHandler> where> inputHandler a = returnIO () 7

� The label fudget creates a label widget and returns an input handler which sets the label string tothe input value's textual representation. The output handler is ignored since labels have no output.> (label text) parent outputHandler => createLabel text parent `thenIO` \ lab ->> returnIO (inputHandler lab)> where> (inputHandler lab) a => setLabel lab (LabelString (show a))� The stateMachine fudget creates a variable in which to store the state. The input handler returnedapplies the transition function f to the current state and the input value and then updates the stateand applies the output handler to the output value.> (stateMachine f init) parent outputHandler => newVar init `thenIO` \ stateVar ->> returnIO (inputHandler stateVar)> where> (inputHandler stateVar) a => readVar stateVar `thenIO` \ s ->> let (s', b) = f (s, a)> in writeVar stateVar s' `thenIO` \ _ ->> outputHandler b� The fudget composition operation <==< creates two fudgets in order.> (f1 <==< f2) parent outputHandler => f1 parent outputHandler `thenIO` \ handler ->> f2 parent handler `thenIO` \ inputHandler ->> returnIO inputHandlerThe combinators described so far are, at most concerned with the local appearance of the interface: noneare concerned with the overall layout of the widgets on the screen. This issue can be tackled in several ways.1. The default layout of widgets on the screen is determined by the order in which the widgets are created:the �rst widgets created will be nearer the top or the left-hand side of their parent than the last widgets.Therefore, in a fudget of the form f1 <==< f2, (where data ows from right to left) f1 will appearabove or to the left of f2.A simple way of changing the layout of widgets is to change the order in which they are created. Forexample, using an alternative fudget combinator >==> :: F � � ! F � ! F � (in whichdata ows from left to right) it is possible to swap the order in which a fudget (or group of fudgets) iscreated.This combinator is a little tricky to implement because it is necessary to create the �rst fudget beforeits output handler is known. One way to implement this is to use a mutable variable as a \place-holder"until the second fudget is created (when the output handler for the �rst fudget will be known).42. Most widget sets provide an extensive range of layout modi�ers which allow non-default layouts to becreated. For example, the children of a Motif RowColumn widget will either be arranged in a row or ina column depending on the current value of the XmNorientation resource.4Peyton-Jones has shown us a simpler solution based on the �xpoint monad operator fixIO :: (� ! IO �) ! IO �.8

At present, we provide three such \fudget modi�ers": row, column, grid (all of type F � � ! F ��) which arrange the widgets in the fudgets they are applied to in a horizontal row, a vertical columnor in a rectangular grid.6 Problems with FudgetsWe have applied a set of Fudgets based on the above implementation technique to a large industrial project.Overall, our experience of using Fudgets is that they allow one to generate sophisticated interfaces quicklyand easily. However, in some circumstances, we found the structured approach required when using Fudgetsoverly restrictive.During the summer of 1993, the �rst author carried out a case study for BT | investigating the suitabilityof Functional Programming Languages for industrial use [6] | during which we implemented a front end fora small part of BT's database. A (simpli�ed) version of a single screen had the following characteristics:� When a button is pressed, a query (consisting of a name and an address) is to be sent to the databaseand the result displayed in an output �eld.� Queries are to be \validated" before being sent to the database. (For example, one might check thatthe name is a non-empty sequence of letters.)� In the event of an error (whether caused by failing the validation check or an unsuccessful query), anerror shell must \popup" and display the error message.Figure 4 shows the dataow within this application.
Search

Button
Name:_________

Input 1

Input 2

Address:_______

Error Shell

Error:_____________

Validation DB Query Result

Phone: 041-339-8855

Figure 4. A Database FrontendThere are three major problems in turning this diagram into a valid fudget:1. The two search strings must be received simultaneously by the validation section. With the abovede�nition of Fudgets, we must send messages to the two input fudgets requesting them to outputtheir current contents; there is no possibility of sending these messages \simultaneously" and so nopossibility of receiving the responses \simultaneously."Our solution is to de�ne a second kind of Fudget consisting of those widgets which cannot generatecallbacks. Fudgets of this kind can be represented by the typetype F2 � � = Widget ! IO (� ! IO �)and combined with the combinator >|< :: F2 �1 �1 ! F2 �2 �2 ! F2 (�1, �2) (�1, �2)which, on receiving a pair of values, sends the �rst value to the �rst fudget and the second valueto the second fudget and returns the two replies received.9

> (f1 >|< f2) parent => f1 parent `thenIO` \ h1 ->> f2 parent `thenIO` \ h2 ->> returnIO (h1 `combine` h2)> where> (h1 `combine` h2) (a1, a2) => h1 a1 `thenIO` \ b1 ->> h2 a2 `thenIO` \ b2 ->> returnIO (b1, b2)This second kind of fudget is readily converted to the �rst kind. It is neither possible nor sensible toconvert the �rst kind to the second kind.Carlsson and Hallgren have con�rmed [2] that their implementation of Fudgets su�ers from a similarproblem though they solve it in a di�erent manner.2. Both the validation section and the database lookup section have two outputs; with both Carlsson andHallgren's Fudgets and our own, Fudgets are only allowed to have a single output.There are two solutions to this problem:� We might design the validation and database lookup fudgets so that they \tag" their outputaccording to whether it is an error message or a valid result. Special \routing combinators" coulduse these tags to decide where to send the result.Problems with this solution are that they tend to introduce a lot of tagging and untagging functionsinto the program and also, because the dataow is no longer explicit in the structure of theprogram, much of the bene�t of the Fudget approach is lost.� An alternative solution is to provide a third kind of Fudget (and associated combinators) with asingle input but two outputs. This is perfectly possible but we see no reason to suppose that wewon't also �nd a need for still more kinds of Fudget with two inputs and two outputs, one inputand three output, etc.The tension here is between providing a small but restrictive library of well-understood compo-nents or a larger library of less general, less well-understood components. We favour the former.3. One aspect of the way the X window system organises windows in hierarchies is that popup shells mustbe children of the top-level shell to work correctly. On the other hand, we would probably want to usea fudget modi�er such as row to control the layout of the other fudgets and so the other fudgets willnot be parents of the top-level shell. With the widget combinators and modi�ers discussed above, it isnot possible for the input widgets and the error widget to have di�erent parents.This is just a single instance of a basic problem: in widget-based programs, the overall structure ofthe visual layout of the interface is determined by the widget hierarchy; in fudget-based programs, thewidget hierarchy is determined by the dataow within the application. That is, the dataow withinthe application will determine the overall structure of the visual layout of the interface. It follows thatit may be hard or even impossible to obtain a particular visual layout without signi�cantly sacri�cingthe clarity of the program.It is worth noting that the last two problems are caused by the structured approach imposed by the useof combinators. In the �rst case, the problem is that a highly structured approach doesn't seem to beappropriate; while in the second case, there is a clash between the structure imposed by the dataow andthe structure imposed by the visual appearance required of the interface.10

7 ConclusionsTill recently, there has been no easy way to create graphical user interfaces in lazy functional languages.Carlsson and Hallgren have implemented a complete widget (or, rather, fudget) set and combinators forcombining simple fudgets to create complete applications. Though not without problems, their system isvery impressive: it provides a fast and e�ective way of generating graphical user-interfaces.The alternative fudget implementation described here su�ers from many of the same problems as Carlssonand Hallgren's implementation but di�ers in one important respect: our implementation approach can beapplied to standard widget sets. This has two advantages:� Applications developed with our fudgets will be consistent with other applications developed with thesame widget set (irrespective of which language they are implemented in). In particular, they willhave the same \look and feel" and the same resource databases can be used to control their overallcolouration, etc.� It takes a substantial e�ort to create a widget set. By using pre-existing widget sets, we avoid the needto recreate that e�ort.We see two ways of developing this work further:� Many imperative programmers do not directly write programs like that shown at the end of section 2.Instead, they use a \GUI builder" which allows them to place widgets directly on the screen. TheGUI builder automatically generates a program to which the programmer need only add the callbackroutines.We see this approach as a useful way of overcoming one of Fudgets main problems: obtaining thecorrect layout. We imagine that one would �rst write the application and then use the GUI builder torearrange the widgets on screen.(We understand that there is a GUI builder for Carlsson and Hallgren's Fudget system though we havenot been able to see this builder in operation.)� Ideally, one would like to model each user interface component as a concurrent function (widget).User interface components then communicate with each other and the client program via streams ofmessages. This removes the need for callback functions, which are only needed in languages like Cbecause they have no support for concurrency.Currently, the Glasgow Haskell compiler does not generate code which can be executed concurrently.However, this facility might be available in a future version. The authors have already built a concurrentX11 interface for Ada which results in much simpler software. An interface in a concurrent Haskellshould bene�t similarly.AcknowledgementsThe work reported here is based on an Openlook version developed while at Glasgow University's ComputingScience Department. The Motif version and (a considerably extended variant of) the database example weredeveloped by the �rst author while working at BT Research Labs on the FLARE project whose support wegratefully acknowledge. Thanks too to Will Partain and Simon Peyton-Jones for their patience in explaininghow to extend the Glasgow Haskell Compiler. 11

References[1] M. Carlsson and T. Hallgren. Fudgets: A Graphical User Interface in a Lazy Functional Language. InProceedings of the Conference on Functional Programming and Computer Architecture, 1993.[2] M. Carlsson and T. Hallgren. Private communication. 14 October, 1993.[3] S.L. Peyton Jones and J. Launchbury. Unboxed values as �rst class citizens in a non-strict functional lan-guages. In J. Hughes, editor, Proceedings of the Conference on Functional Programming and ComputerArchitecture, pp. 636{666, Cambridge, Massachussets, USA, 26{28 August 1991.[4] S.L. Peyton-Jones and P. Wadler. Imperative Functional Programming. In Proceedings of the 1993Conference on Principles of Programming Languages, Charleston, ACM, 1993.[5] J. Launchbury. Lazy Imperative Programming. In Proceedings of the Workshop on State in ProgrammingLanguages, pp. 46{56, Copenhagen, 1993. (Available as YALEU/DCS/RR-968, Yale University.)[6] A. Reid. A Window-based Application Front-End in Haskell BT Research Labs, Martlesham Heath.September 1993.[7] D. Sinclair. Lazy Wafe | Graphical Interfaces for Functional Languages. In Heldal et al., editor,Glasgow Workshop on Functional Programming, 1992.[8] S. Singh. Using XView/X11 from Miranda. In Heldal et al., editor, Glasgow Workshop on FunctionalProgramming, 1992.

12

